Kohti nanokoneita – tutkijat onnistuivat hallitsemaan DNA-rakennetta valon avulla

Nano- eli molekyylikone on keinotekoinen, yhden molekyylin muodostama itsejärjestäytynyt laite, joka ohjaa itse toimintaansa eli muodostaa itsekseen toimivia järjestelmiä. Tämä ominaisuus voisi olla merkittävä pehmeän robotiikan sovelluksissa. Esimerkiksi lääketieteessä nanokone voi auttaa viemään ja vapauttamaan syöpälääkkeitä juuri oikeassa paikassa kehoa.
Käytännön sovelluksiin on vielä pitkä matka, sillä tutkijat eivät ole pystyneet hallitsemaan nanokoneita riittävästi esimerkiksi komentojen avulla. Nyt Aalto-yliopiston ja israelilaisen Weizmann-instituutin tutkijat ovat kuitenkin onnistuneet luomaan synteettisen DNA-taitosrakenteen, joka avautuu ja sulkeutuu helposti hallittavalla tavalla. Hallittu laskostaminen on tärkeä askel matkalla kohti molekyylikoneiden valmistamista.
Tutkijat keskittyivät DNA-origamiin, joka on erityinen menetelmä DNA-nanorakenteiden luomiseen. Se kantaa geneettistä koodia ja kykenee kiertymään, laskostumaan ja omaksumaan monia eri muotoja.
”Nanotaitokset ovat liuoksessa, joka muuttuu happamammaksi valon loisteessa. Kun happamuus lisääntyy, taitoksiin muodostuu kemiallisia sidoksia, jotka liittävät niiden päät yhteen ja vetävät taitoksen kiinni. Kun valo sammutetaan, happamuus pienenee saaden päiden väliset sidokset rikkoontumaan, ja taitos avautuu jälleen”, kertoo Aallon tohtorikoulutettava Joonas Ryssy.
Tutkijat ympäri maailmaa ovat aiemminkin yrittäneet hallita DNA-rakenteita valolla, mutta valon kanssa reagoivan liuoksen yhdistäminen hapon kanssa reagoiviin DNA-makromolekyyleihin on poikkeuksellista. Valon käyttäminen DNA-origamin valmistamisessa on houkuttelevaa, koska sitä on helppo hallita myös etäältä. Tällöin järjestelmään ei kosketa fyysisesti, vaan siihen voidaan vaikuttaa esimerkiksi toisesta huoneesta käsin.
”Voimme hallita liikkeen voimakkuutta taitokseen kohdistetun valon määrällä. Jos emme halua sulkea liitosta kokonaan, emme kohdista siihen liikaa valoa. Valon ja samalla taitoksen hallittu, asteittainen säätely erottaa nanorakenteen muista”, kertoo Aalto-yliopiston professori Anton Kuzyk.
Sen lisäksi, että menetelmällä voidaan hallita taitoksen astetta, koe voidaan myös toistaa. Jos valo palautetaan, DNA-nanorakenne laskostuu uudelleen.
”Muissa samankaltaisissa valoon reagoivissa nanorakenteissa tarvitaan yksi valonlähde liitoksen sulkemiseen ja toinen valonlähde sen avaamiseen. Meidän järjestelmämme tarvitsee vain yhden valonlähteen, minkä ansiosta se voi olla käyttökelpoisempi tulevaisuuden sovelluksissa”, kertoo professori Rafal Klajn Weizmann-instituutista.
äپٴᲹ:
Artikkeli:
Aikaisempi uutinen: Itsejärjestäytyneitä nanorakenteita voidaan hallita valikoidusti
Anton Kuzyk (englanniksi)
Professori
Aalto-yliopisto
anton.kuzyk@aalto.fi
Joonas Ryssy
Tohtorikoulutettava
Aalto-yliopisto
joonas.ryssy@aalto.fi
puh. 0400 664 985
Twitter: @taurine330
Lue lisää uutisia

Aalto-yliopisto jälleen Suomen ykkönen QS:n yliopistovertailussa
Maailman yliopistoista Aalto oli sijalla 114.
AALTOLAB-virtuaalilaboratoriot palkittiin Kemianteollisuuden turvallisuuspalkinnolla
Kemianteollisuus ry on myöntänyt vuoden 2025 Turvallisuuspalkinnon Aalto-yliopiston Kemian tekniikan korkeakoululle, korkeatasoisen ja vaikuttavan turvallisuusosaamisen kehitystyöstä kemian alalla.
Tutkimus: Seksuaali- ja sukupuolivähemmistöille myönteiset yritykset ovat selvästi innovatiivisempia
Tutkimuksen mukaan LGBTQ+- eli sukupuoli- ja seksuaalivähemmistöille myönteinen henkilöstöpolitiikka voi merkittävästi vauhdittaa innovaatioiden syntymistä yhdysvaltalaisissa yrityksissä.