InstituteQ koordinoi kvanttitutkimusta, -koulutusta sekä -liiketoimintaa Suomessa
Kvanttitutkijat löysivät uuden tavan nähdä katsomatta
Ihminen näkee ympäristönsä, kun esineistä kimpoava valo imeytyy silmän verkkokalvon soluihin. Mutta onnistuuko näkeminen, vaikka valo ei ikinä kohtaisi verkkokalvoa? Kvanttimaailmassa se on mahdollista.
Valo on olemassa sekä fotoneina eli valohiukkasina että valoaaltoina. Tätä kaksoisluonnetta hyödyntämällä on mahdollista suunnitella tieteellinen koe, jossa kohteen havaitsemiseen riittää sen pelkkä läsnäolo. Mitään vuorovaikutusta, kuten näkemistä, ei mittaajan ja kohteen välillä tarvita.
Ensimmäisenä vuorovaikutuksetonta havaitsemista tutki optiikan työvälineillä Anton Zeilinger, joka oli myös yksi vuoden 2022 fysiikan Nobel-voittajista.
Nyt Aalto-yliopiston tutkijat Shruti Dogra, John J. McCord ja Gheorghe Sorin Paraoanu ovat löytäneet uuden ja paljon tarkemman tavan toteuttaa mittauskokeita ilman vuorovaikutusta kohteen kanssa. Havainnoitavina olivat klassisen fysiikan lakien alaiset mikroaaltopulssit, joita havainnoitiin optisten laitteiden sijaan transmoneilla. Ne ovat keinotekoisia makroskooppisia suprajohtimia, Kvanttifysiikan ja klassisen fysiikan maailmojen rajapinnassa tapahtuneen tutkimuksen tulokset julkaistiin hiljattain Nature Communications -lehdessä.
Ylimääräinen kerros kvanttia
Zeilingerin kokeet kiehtoivat tutkijoita, mutta optiikan sijaan he sovelsivat omia kvanttityökalujaan.
“Meidän piti soveltaa aiempaa konseptia meille tuttuihin työkaluihin eli suprajohtimiin. Siksi jouduimme myös muuttamaan koeprotokollaa radikaalisti: lisäsimme siihen ylimääräisen kerroksen ”kvanttia” käyttämällä transmoneja niiden korkeimmalla energiatasolla. Onnistumisen avain oli transmonin kvanttikoherenssin hyödyntäminen mittaamisessa”, Paraoanu sanoo.
Kvanttikoherenssi viittaa kvanttimaailman ilmiöön, jossa kohde voi olla samanaikaisesti kahdessa eri tilassa. Ilmiö on kuitenkin äärimmäisen herkkä ja tuhoutuu pienimmästäkin vuorovaikutuksesta.
Aallon tutkijat osoittivat, että pelkkä mikroaaltojen olemassaolo muutti transmonien energiatasoa. Mikroaallot siis havaittiin tarkastelemalla transmonien kvanttikoherenssiin perustuvaa muutosta ilman vuorovaikutusta.
Tulokset osoittivat, että menetelmän havaitsemistarkkuus oli huomattavasti parempi kuin optiikkaan perustuvassa menetelmässä eikä se muuttunut mihinkään, vaikka kokeita tehtiin lisää ja tutkijat kävivät menetelmänsä monta kertaa läpi virheiden varalta.
“Osoitimme myös, että menetelmällämme voi havaita myös erittäin heikkoja mikroaaltopulsseja,” Dogra sanoo.
Kokeessa löytyi myös uusi tapa saavuttaa niin sanottu kvanttietu eli tilanne, jossa kvanttifysiikkaan perustuva laite pystyy ratkaisemaan ongelman paremmin kuin klassisen fysiikan laite. Usein ajatellaan, että kvanttietu on erittäin työlästä saavuttaa. Esimerkiksi kvanttitietokoneiden puolella tutkijat uskovat kvanttiedun todistamisen vaativan valtavat määrät kubitteja eli kvanttitietokoneiden rakennuspalikoita. Dogran, McCordin ja Paraoanun kehittämä menetelmä kuitenkin demonstroi kvanttiedun olemassaolon jo varsin yksinkertaisessa tilanteessa.
Sovelluksia kvanttiteknologian eri prosesseissa
Vuorovaikutuksesta vapaita mittauksia tehdään jo monilla kvanttiteknologian eri osa-aluilla. Ne kuitenkin perustuvat aiempaan, optiikkaa hyödyntävään menetelmään. Nyt löytynyt uusi menetelmä voisi tehostaa näitä prosesseja huomattavasti.
“Kvanttitietokoneissa menetelmäämme voisi käyttää esimerkiksi fotonien tilojen havaitsemiseen koneiden muistissa. Se olisi erittäin tehokas tapa saada tietoa kvanttiprosessorista häiritsemättä sen toimintaa”, sanoo Paraoanu.
Paraoanun johtama tutkimusryhmä aikoo tutkia menetelmällään muun muassa kontrafaktuaalista kommunikaatiota eli viestien lähettämistä kahden osapuolen välillä ilman fyysisten hiukkasten siirtoa, ja kontrafaktuaalista kvanttilaskentaa, jossa laskutoimituksen tulos saadaan käynnistämättä tietokonetta.
Tutkimus ilman vuorovaikutusta tehtävästä mittaamisesta on saatavilla
äپٴᲹ:
OtaNano
Otaniemen mikro- ja nanoteknologioiden infrastruktuuri OtaNano on kansallinen tutkimusinfrastruktuuri kilpailukykyisen tutkimuksen harjoittamiseen nanotieteiden ja -teknologian sekä kvanttiteknologioiden alalla.
The national Quantum Technology Finland (QTF) Centre of Excellence brings together scientific and technological excellence and cutting-edge research infrastructures to harness quantum phenomena in solid-state-based quantum devices and applications.
Lue lisää uutisia
Hämeenlinnan taidemuseon näyttely herättää teokset henkiin elokuvan keinoin
Hämeenlinnan taidemuseossa nähdään yhteistyössä Aalto-yliopiston elokuvataiteen laitos ELO:n kanssa toteutettu Kehyskertomuksia: 24 fps / Reframing Cinema -näyttely.
Jätteet pois silmänpohjasta – kuivan ikärappeuman hoitoon on kehitetty lääketieteellinen hoitomenetelmä
Silmänpohjan ikärappeumasta kärsii reilu kolmasosa yli 80-vuotiaista. Valtaosalla kyseessä on taudin kuiva muoto, joka etenee hitaasti. Tähän kansantautiin ei ole tehokasta hoitoa, vaikka esimerkiksi antioksidanttien käyttöä on kokeiltu. Silmänpohjan ikärappeuman kuivan muodon eteneminen voidaan nyt mahdollisesti pysäyttää uudella, Aalto-yliopiston tutkijoiden kehittämällä hoitomenetelmällä.
Tekoäly saa meidät yliarvioimaan kognitiiviset kykymme – tutkimus paljastaa käänteisen ylivertaisuusvinouman
Uusi tutkimus varoittaa luottamasta sokeasti suuriin kielimalleihin loogisessa päättelyssä. Jos ChatGPT-keskustelussa käyttää vain yhden kehotteen, tekoälyn hyödyllisyys jää paljon rajallisemmaksi kuin käyttäjät ehkä ymmärtävät.