ºÚÁÏÍø

Uutiset

Tieteisfiktiosta totta: valon nopeudella toimiva tekoäly osoitettiin mahdolliseksi

Tutkijat ovat onnistuneet tekemään niin sanottua tensorilaskentaa valon nopeudella yhdellä laskentakierroksella. Tämä on merkittävä askel kohti seuraavan sukupolven tekoälylaitteistoa, joka perustuu optiseen laskentaan – eli käytännössä valoon – perinteisen elektroniikan sijaan.
Futuristinen punainen hohtava hologrammirakenne nousee tummasta, monimutkaisesta piirilevystä.
Fotoniikan ryhmä / Aalto-yliopisto

Tensorilaskentana tunnettu aritmetiikan ala toimii lähes kaikkien nykyaikaisten teknologioiden ja erityisesti tekoälyn selkärankana, mutta sen toiminnallisuus ulottuu kauas matematiikan lyhyen oppimäärän ulkopuolelle: ajattele vaikkapa mitä kaikkea tarvitaan Rubikin kuution pyörittämiseen, kiertämiseen ja uudelleenjärjestelyyn eri ulottuvuuksissa. Siinä missä ihmiset ja perinteiset tietokoneet suorittavat nämä operaatiot kohta kohdalta, valo voi tehdä ne kaikki kerralla.

Nykyisin kaikki tekoälyn toiminnallisuudet aina kuvantunnistuksesta kielen käsittelyyn perustuvat tensorilaskentoihin. Datan räjähdysmäinen kasvu on kuitenkin työntänyt grafiikkasuorittimien (GPU) kaltaiset perinteiset digitaaliset laskentajärjestelmät äärirajoilleen niin nopeuden, skaalautuvuuden kuin energiankulutuksenkin suhteen.

Aalto-yliopiston tutkijatohtori Yufeng Zhangin johtama kansainvälinen tutkijaryhmä on nyt tarttunut tähän ajankohtaiseen ongelmaan. Tutkijat onnistuivat löytämään uuden menetelmän, joka pystyy suorittamaan monimutkaisia tensorilaskentoja käyttämällä yhtä valon etenemissuuntaa. Tuloksena syntyi valon nopeudella saavutettu, kertaluontoinen tensorilaskenta.

"Menetelmämme suorittaa samankaltaisia laskentoja kuin nykyiset grafiikkasuorittimet, kuten konvoluutioita ja huomiokerroksia – mutta tekee sen valon nopeudella. Elektronisten piirien sijaan käytämme valon fysikaalisia ominaisuuksia useiden laskutoimitusten suorittamiseen samanaikaisesti", Zhang kertoo.

Tämän saavuttamiseksi tutkijat ohjelmoivat digitaalista dataa valon värähdyslaajuuksiin ja -vaiheisiin, jolloin luvut muuttuivat optisen kentän fysikaalisiksi ominaisuuksiksi. Kun nämä valokentät vuorovaikuttavat ja yhdistyvät, ne toteuttavat luonnostaan matemaattisia operaatioita, kuten matriisi- ja tensorikertolaskuja, jotka taas muodostavat syväoppimisalgoritmien ytimen. Käyttämällä useita valon aallonpituuksia, tutkimusryhmä pystyi laajentamaan tätä lähestymistapaa käsittelemään vielä korkea-asteisempia tensorioperaatioita.

"Kuvittele olevasi tullivirkailija, jonka täytyy tarkastaa jokainen paketti useilla eri toimintoja tekevillä laitteilla ja sitten lajitella ne oikeisiin lokeroihin, normaalisti yksi paketti kerrallaan. Optinen laskentamenetelmämme yhdistää kaikki paketit ja laittaa ne samalla kerralla kaikkien eri koneiden läpi. Olemme luoneet 'optisia koukkuja', jotka yhdistävät jokaisen sisääntulon oikeaan ulostuloon: tällöin kaikki paketit tarkastetaan ja lajitellaan välittömästi ja samanaikaisesti", Zhang selittää.

Tehokkuuden lisäksi tämän menetelmän keskeinen etu on tutkijoiden mukaan sen yksinkertaisuus. Optiset toiminnot tapahtuvat passiivisesti valon edetessä, jolloin laskennan aikana ei ole tarvetta aktiiviselle ohjaukselle tai elektronisille kytkennöille.

Aalto-yliopiston fotoniikkaryhmän johtajan, professori Zhipei Sunin mukaan lähestymistapaa voidaan toteuttaa lähes millä tahansa optisella alustalla.

"Tulevaisuudessa integroimme tämän laskentakehyksen suoraan fotonisiin piireihin, jolloin valoon pohjaavat prosessorit voivat suorittaa monimutkaisia tekoälytehtäviä erittäin pienellä virrankulutuksella", Sun sanoo.

Zhangin mukaan tavoitteena on ottaa menetelmä käyttöön suuryritysten jo olemassa olevilla laitteistoalustoilla. Hän asettaa varovaisen arvion, että integraatio voisi tapahtua 3–5 vuoden sisällä.

"Näin syntyy uusi sukupolvi optisia laskentajärjestelmiä, joiden käyttö nopeuttaa huomattavasti monimutkaisten tekoälytehtävien toteuttamista lukuisilla eri aloilla", hän sanoo.

Tutkimus on julkaistu 14. marraskuuta.

  • ±Êä¾±±¹¾±³Ù±ð³Ù³Ù²â:
  • Julkaistu:
Jaa
URL kopioitu

Lue lisää uutisia

Työntekijä käyttää tablettia, kun robottikäsi hitsaa metallia ja kipinöitä lentää teollisuusympäristössä.
Tutkimus ja taide Julkaistu:

Erikoistuneet tekoälymallit voivat olla Suomen seuraava globaali vientituote

Resurssitehokkaat ja erikoistuneet tekoälymallit voivat olla Suomen seuraava kansainvälinen kilpailuetu ja mahdollisuus erottautua suuria kielimalleja hyödyntävillä markkinoilla.
Ajatteleva henkilön siluetti, jonka oikealla puolella on värikkäitä digitaalisia tietoja ja grafiikkaa.
³Û³ó³Ù±ð¾±²õ³Ù²âö, Mediatiedotteet Julkaistu:

Finnish AI Region jatkaa toiselle kaudelle – EU myönsi huippupisteet

Finnish AI Region (FAIR) EDIH on valittu jatkamaan toimintaansa toiselle kaudelle erinomaisin arvosanoin. Euroopan unionin myöntämä jatkorahoitus mahdollistaa palveluiden laajentamisen vuoden 2026 alusta. Aalto-yliopisto on yksi hankkeen kymmenestä partnerista.
#65 maailmassa kauppa- ja taloustieteissä Times Higher Educationin alakohtainen yliopistovertailu 2026. Keltainen tausta.
Tutkimus ja taide Julkaistu:

Kauppa- ja taloustieteet ja tietotekniikka sadan parhaan joukossa maailmanlaajuisesti

Times Higher Educationin yliopistovertailu perustuu muun muassa kansainvälisyyteen ja tutkimusviittauksiin.
Unite! Seed Fund 2026 ilmoitus, jossa pieni kasvi nousee maasta. Haku avoinna opiskelijatoiminnalle, opetukselle ja tutkimukselle.
³Û³ó³Ù±ð¾±²õ³Ù²âö, Tutkimus ja taide, Opinnot, Yliopisto Julkaistu:

Unite! Seed fund 2026 – rahoitushaku on auki

Unite! Seed Fund -rahoitushaku vuodelle 2026 on nyt avoinna. Rahoitusta on tarjolla kolmella alueella: opetus ja oppiminen, tutkimus ja tohtorikoulutus sekä opiskelijatoiminta. Hakuaika päättyy 20.3.2026.