Tutkijat pääsivät lähes kvanttirajalle nanorummun avulla
 
  Aalto-yliopiston ja Jyväskylän yliopiston tutkijat ovat kehittäneet uuden tavan tehdä huipputarkkoja mikroaaltoalueen mittauksia. Menetelmää voidaan käyttää kvantti-informaation käsittelyssä esimerkiksi muuntamalla tehokkaasti elektroniikan piireissä olevaa informaatiota valon kantamaksi.
Tärkeä kvanttiraja
Kun radion virittää kaukana radiomastosta, signaaliin tulee kohinaa. Kohina johtuu pääosin siitä, että sähkömagneettisen signaalin kantamaa informaatiota pitää vahvistaa, jotta se voidaan muuntaa kuultavaan muotoon. Kvanttimekaniikan lakien mukaan kaikki vahvistimet lisäävät kohinaa. 1980-luvun alussa yhdysvaltalainen fyysikko Carlton Caves osoitti teoreettisesti, että Heisenbergin epämääräisyysperiaate kyseisille signaaleille vaatii, että kohinaa on lisättävä vähintään puolen energiakvantin verran. Arkielämässä tällaisella kohinalla ei ole merkitystä, mutta tutkijat ympäri maailmaa ovat silti yrittäneet kehittää vahvistimia, jotka pääsisivät lähelle Cavesin rajaa.
”Vahvistinten kvanttiraja on olennainen kvantti-informaatiota käsiteltäessä, muun muassa kvanttilaskennassa ja kvanttimekaanisissa mittauksissa, koska lisätty kohina rajoittaa tarkasti mitattujen signaalien suuruutta”, toteaa Aalto-yliopiston professori Mika Sillanpää.
Kvanttibiteistä lentäviin kubitteihin
Tähän mennessä rajan lähelle on päässyt vain 1980-luvulta lähtien kehitelty suprajohtaviin liitoksiin perustuva vahvistin, jonka käyttö ei kuitenkaan ole ongelmatonta. Sillanpään johtamassa työssä Aallon ja Jyväskylän yliopiston tutkijat yhdistivät nanomekaanisen värähtelijän, ”nanorumpukalvon”, kahteen suprajohtavaan piiriin, eli kaviteettiin.
”Tuloksena oli maailman tarkin nanorummuilla tehty mikroaaltojen mittaus”, hehkuttaa mittauksen tehnyt Caspar Ockeloen-Korppi Aalto-yliopistosta.
Mikroaaltomittauksen lisäksi laitteella voidaan siirtää kvantti-informaatiota taajuudelta toiselle ja samalla vahvistaa sitä.
”Tällä tavoin voitaisiin siirtää informaatiota vaikkapa suprajohtavista kvanttibiteistä näkyvän valon alueen ’lentäviin kubitteihin’ ja takaisin”, maalailevat laitteen teorian luoneet Jyväskylän yliopiston professori Tero Heikkilä ja akatemiatutkija Francesco Massel. Menetelmästä voisi olla siten hyötyä esimerkiksi kvanttimekaniikkaan perustuvassa datan salauksessa eli kvanttikryptografiassa.
Tutkimukseen osallistuivat myös tutkijat Juha-Matti Pirkkalainen ja Erno Darmskägg Aalto-yliopistosta. Se julkaistiin fysiikan alan arvostetuimpiin kuuluvassa Physical Review X -julkaisussa 28. lokakuuta 2016. Työ tehtiin Suomen Akatemian Matalien lämpötilojen kvantti-ilmiöiden ja komponenttien huippuyksikössä ja sitä rahoitti myös Euroopan tiedeneuvosto.
Linkki
äپdz:
Professori Mika Sillanpää, Aalto-yliopisto
p. 050 344 7330
mika.sillanpaa@aalto.fi
Professori Tero Heikkilä, Jyväskylän yliopisto
p. 040 805 4804
tero.t.heikkila@jyu.fi
Lue lisää uutisia
 
  Hämeenlinnan taidemuseon näyttely herättää teokset henkiin elokuvan keinoin
Hämeenlinnan taidemuseossa nähdään yhteistyössä Aalto-yliopiston elokuvataiteen laitos ELO:n kanssa toteutettu Kehyskertomuksia: 24 fps / Reframing Cinema -näyttely. 
  Jätteet pois silmänpohjasta – kuivan ikärappeuman hoitoon on kehitetty lääketieteellinen hoitomenetelmä
Silmänpohjan ikärappeumasta kärsii reilu kolmasosa yli 80-vuotiaista. Valtaosalla kyseessä on taudin kuiva muoto, joka etenee hitaasti. Tähän kansantautiin ei ole tehokasta hoitoa, vaikka esimerkiksi antioksidanttien käyttöä on kokeiltu. Silmänpohjan ikärappeuman kuivan muodon eteneminen voidaan nyt mahdollisesti pysäyttää uudella, Aalto-yliopiston tutkijoiden kehittämällä hoitomenetelmällä. 
  Tekoäly saa meidät yliarvioimaan kognitiiviset kykymme – tutkimus paljastaa käänteisen ylivertaisuusvinouman
Uusi tutkimus varoittaa luottamasta sokeasti suuriin kielimalleihin loogisessa päättelyssä. Jos ChatGPT-keskustelussa käyttää vain yhden kehotteen, tekoälyn hyödyllisyys jää paljon rajallisemmaksi kuin käyttäjät ehkä ymmärtävät. 
   
           
           
           
           
           
          