Uutiset

Uusi mikroaaltokeksintö voi lisätä kvanttitietokoneiden tehokkuutta

Kvanttifyysikot onnistuivat rakentamaan kubittien ohjaukseen soveltuvan mikroaaltolähteen, joka toimii erittäin matalissa lämpötiloissa. Sen teho on sata kertaa aiempaa suurempi ja siksi riittävä kubittien hallintaan. Lisäksi mikroaaltolähteestä aiheutuvat virheet kvanttilaskentaan ovat vähäisiä.
Artistic impression of an on-chip microwave source controlling qubits. Credit: Aleksandr Kakinen
Taiteellinen näkemys mikroaaltolähteestä, joka ohjaa kubitteja. Kuva: Aleksandr Kakinen

Isoja kvanttiprosessoreita hallitaan ajamalla mikroaaltosignaalien sarja kubitteihin eli kvanttibitteihin. Kubitin ohjaukseen käytettävä nopea mikroaaltosignaali kulkee kaapelia pitkin kryostaattiin eli superpakastimeen, jossa kvanttiprosessori sijaitsee.

Nyt rakenteilla olevissa kvanttitietokoneissa on vain rajallisesti kubitteja. Kun kubittien määrä tulevaisuudessa kasvaa yli kymmeniin tuhansiin, loppuu tila jättimäisissäkin kryostaateissa, mikäli jokaista kubittia varten tarvitaan oma kaapelinsa. Vastaan tulee myös lämpöongelma: kryostaatti ei jaksa jäähdyttää kaapeleita.

Nyt suomalaistutkijat ovat Aalto-yliopiston ja VTT:n johdolla kehittäneet kubittien hallintaan uuden ratkaisun, joka voi auttaa kasvattamaan kvanttitietokoneiden laskennassa käytettävien kubittien määrää ja samalla mahdollistaa jopa siirtymisen pienempiin kryostaatteihin.

”Olemme rakentaneet tarkan mikroaaltolähteen, joka toimii kvanttiprosessorien kanssa samassa erittäin matalassa noin -273 asteen lämpötilassa. Uudesta mikroaaltolähteestä saadaan sata kertaa isompi teho kuin aikaisemmista vastaavista, ja se riittää tehon puolesta kubittien hallintaan eli kvanttilogiikan suorittamiseen”, tiimiä johtanut Aalto-yliopiston ja VTT:n professori Mikko Möttönen sanoo.

Aalto University professor Mikko Mottonen, photo Mikko Raskinen

Olemme rakentaneet tarkan mikroaaltolähteen, joka toimii kvanttiprosessorien kanssa samassa erittäin matalassa noin -273 asteen lämpötilassa

Mikko Möttönen

Mitä tarkempi, sen parempi

Kun luodaan mikroaaltoja eli edestakaisin heilahtelevaa sähkövirtaa, se ei koskaan täysin tarkasti pysy oikeassa taajuudessa. Mitä tarkemmin oikea taajuus pysyy, sitä paremmin se vastaa kubitin värähtelytaajuutta, ja sitä virheettömämmin haluttu kvanttioperaatio on mahdollista suorittaa.

”Uusi mikroaaltolähde tuottaa hyvin tarkasti siniaaltoa eli sähköä, joka heilahtelee yli miljardi kertaa sekunnissa. Mikroaaltolähteestä aiheutuvat virheet ovat hyvin vähäisiä, mikä auttaa tarkkojen loogisten kvanttioperaatioiden suorittamisessa”, Möttönen sanoo.

Koska kyseessä on jatkuvatehoinen mikroaaltolähde, sitä ei sellaisenaan voida käyttää kubittien hallintaan. Seuraavaksi on ratkaistava, miten mikroaallot saadaan muotoiltua pulsseiksi eli niin, että ne voidaan nopeasti kytkeä päälle ja pois päältä halutulla hetkellä. Uudesta ratkaisusta voi olla myöhemmin hyötyä myös kvanttisensoreissa, kuten kvanttitutkassa.

”Kvanttitietokoneen ja sensoreiden lisäksi mikroaaltolähde voi toimia kellona kaikille kylmille elektroniikkalaitteille. Se pitäisi eri laitteet samassa tahdissa, jotta ne voisivat suorittaa operaatioita usealle eri kubitille halutuissa aikaikkunoissa”, Möttönen sanoo.

Laitteen teho perustuu suprajohtavaan tuplaspiraaliin, joka pystyy muuttamaan tasajännitteen tarkasti halutulle mikroaaltotaajuudelle. Mikroaaltolähde on kokonaisuudessaan alle millimetrin kokoinen.

VTT:n tutkijat, etenkin nykyisin IQM-yrityksen laitteistojen kehitystä johtava Juha Hassel, vastasivat teoreettisesta analyysistä ja näytteen suunnittelusta. Laite rakennettiin VTT:llä ja tutkijatohtori Chengyu Yan ja muut Aalto-yliopiston tutkijat suorittivat kokeet kansallista OtaNano-tutkimusinfrastruktuuria hyödyntäen. Yan on nykyisin professorina Huazhongin teknillisessä yliopistossa Kiinassa. Tutkimukseen osallistuneet ryhmät ovat osa kansallista huippuyksikköä Quantum Technology Finland (QTF) ja kansallista kvantti-instituuttia (InstituteQ).

Tutkimusartikkeli: Chengyu Yan, Juha Hassel, Visa Vesterinen, Jinli Zhang, Joni Ikonen, Leif Grönberg, Jan Goetz and Mikko Möttönen, , Nature Electronics, DOI: 10.1038/s41928-021-00680-z (2021)

Yhteystiedot:

Kvanttiteknologian huippuyksikkö (QTF) yhdistää tieteellisen ja teknologisen kärkiosaamisen sekä tätä tukevan huipputason tutkimusinfrastruktuurin. Katso Suomen Akatemian video.

Lue lisää:

InstituteQ. Photo: Jorden Senior.

InstituteQ – kansallinen kvantti-instituutti

Aalto-yliopiston, Helsingin yliopiston ja VTT:n InstituteQ-yhteistyö kokoaa kansallisen kvanttiteknologian tutkimuksen, koulutuksen ja yrityskentän.

Tutkimus ja taide
QTF-hero logo

The national Quantum Technology Finland (QTF) Centre of Excellence brings together scientific and technological excellence and cutting-edge research infrastructures to harness quantum phenomena in solid-state-based quantum devices and applications.

Quantum Computing and Devices (QCD)

We have a major effort on experimental low-temperature physics, but we also carry out computational and theoretical work down to fundamental quantum mechanics.

Department of Applied Physics
Aalto yliopisto piisirulla

OtaNano

Otaniemen mikro- ja nanoteknologioiden infrastruktuuri OtaNano on kansallinen tutkimusinfrastruktuuri kilpailukykyisen tutkimuksen harjoittamiseen nanotieteiden ja -teknologian sekä kvanttiteknologioiden alalla.

  • äٱٳٲ:
  • Julkaistu:
Jaa
URL kopioitu

Lue lisää uutisia

Kuvan silmästä otti Matti Ahlgren.
Mediatiedotteet Julkaistu:

Jätteet pois silmänpohjasta – kuivan ikärappeuman hoitoon on kehitetty lääketieteellinen hoitomenetelmä

Silmänpohjan ikärappeumasta kärsii reilu kolmasosa yli 80-vuotiaista. Valtaosalla kyseessä on taudin kuiva muoto, joka etenee hitaasti. Tähän kansantautiin ei ole tehokasta hoitoa, vaikka esimerkiksi antioksidanttien käyttöä on kokeiltu. Silmänpohjan ikärappeuman kuivan muodon eteneminen voidaan nyt mahdollisesti pysäyttää uudella, Aalto-yliopiston tutkijoiden kehittämällä hoitomenetelmällä.
Daniela da Silva Fernandes vasemmalla, Robin Welsch oikealla.
Mediatiedotteet Julkaistu:

Tekoäly saa meidät yliarvioimaan kognitiiviset kykymme – tutkimus paljastaa käänteisen ylivertaisuusvinouman

Uusi tutkimus varoittaa luottamasta sokeasti suuriin kielimalleihin loogisessa päättelyssä. Jos ChatGPT-keskustelussa käyttää vain yhden kehotteen, tekoälyn hyödyllisyys jää paljon rajallisemmaksi kuin käyttäjät ehkä ymmärtävät.
Hitesh Monga Aalto-yliopiston tutorin paidassa ja haalareissa seisoo tiiliseinällä olevan metallisen taideteoksen edessä
Opinnot Julkaistu:

Hitesh Mongan polku Aallossa – kesätyöntekijästä maisteriksi

Maisteriksi Communications Engineering -pääaineesta valmistunut Hitesh Monga kertoo rakentamastaan polusta Aallossa ja sen jälkeen
Apulaisprofessori Lauri Uotinen maanalaisten tutkimusten laboratoriossa. Kallioseinässä kaksi fotogrammetriassa käytettäviä automaattitunnistettavia merkkejä.
Nimitykset Julkaistu:

Esittelyssä kalliotekniikan apulaisprofessori Lauri Uotinen

Lauri Uotinen luo uutta tietoa maanalaisista tiloista fotogrammetrian ja kalliotekniikan avulla.