Uutiset

Tekoäly ennustaa luotettavasti, miten eri lääkeyhdistelmät tappavat syöpäsoluja

Suomessa kehitetyn koneoppimismenetelmän avulla syöpäsairauksia voitaisiin hoitaa nykyistä tehokkaammin.
Some medicine capsules and equations
Uutta koneoppimismenetelmää koulutettiin suurella datajoukolla, joka saatiin aiemmista lääkeaineiden ja syöpäsolujen välistä yhteyttä selvittäneistä tutkimuksista. Kuvitus: Matti Ahlgren / Aalto-yliopisto

Eri lääkkeiden yhdistäminen on usein tehokkain ja turvallisin tapa hoitaa syöpäpotilaita. Nyt Aalto-yliopiston, Helsingin yliopiston ja Turun yliopiston tutkijat ovat kehittäneet  koneoppimismenetelmän, joka ennustaa tarkasti, miten erilaisten lääkkeiden yhdistelmät tappavat syöpäsoluja.

Pitkälle edenneen syövän hoidossa erilaisten hoitomenetelmien yhdistäminen on yleensä välttämätöntä. Syöpäleikkauksen lisäksi potilasta hoidetaan usein sädehoidolla, lääkehoidolla tai molemmilla.  Eri lääkkeitä myös yhdistetään niin, että yhdistelmässä olisi mukana eri soluihin eri tavoin vaikuttavia lääkeaineita.

Yhdistäminen paitsi parantaa hoidon tehoa myös vähentää usein sen haittoja, jos yksittäisten lääkkeiden annostusta pystytään pienentämään. Toimivien lääkeaineyhdistelmien seulominen kokeellisesti on kuitenkin hidasta ja kallista. Siksi yhdistelmähoidon edut jäävät usein saavuttamatta.

Uutta koneoppimismenetelmää koulutettiin suurella datajoukolla, joka saatiin aiemmista lääkeaineiden ja syöpäsolujen välistä yhteyttä selvittäneistä tutkimuksista. Arvostetussa julkaistut tutkimustulokset kertovat, että malli löysi lääkkeiden ja syöpäsolujen väliltä sellaisia yhteyksiä, joita ei havaittu yksinkertaisemmilla malleilla. 

”Koneen oppima malli on itse asiassa koulumatematiikasta tuttu polynomifunktio, mutta erittäin monimutkainen sellainen. Malli antaa erittäin tarkkoja tuloksia. Esimerkiksi niin kutsutun korrelaatiokertoimen arvot olivat kokeissamme yli 0,9. Se viittaa erinomaiseen luotettavuuteen”, Aalto-yliopiston professori Juho Rousu kertoo.

Kokeellisissa mittauksissa korrelaatiokerrointa 0,8-0,9 pidetään luotettavana. Usein se jää kuitenkin niissä sen alle.

Hyötyä myös muiden sairauksien hoidossa

Menetelmä ennustaa tarkasti, miten tietty lääkeaineyhdistelmä tuhoaa syöpäsoluja, vaikka juuri sen yhdistelmän vaikutusta kyseiseen syöpätyyppiin ei olisi aiemmissa laboratorio tutkimuksissa testattu. 

”Tämä auttaa syöpätutkijoita valitsemaan, mitä lääkeaineyhdistelmiä kannattaa valita tuhansien vaihtoehtojen joukosta jatkotutkimuksiin”, sanoo tutkija Tero Aittokallio Suomen molekyylilääketieteen instituutista FIMMistä, joka on osa Helsingin yliopistoa.

Samaa menetelmää voitaisiin hyödyntää myös muiden kuin syöpäsairauksien kohdalla. Tällöin malli täytyisi opettaa uudelleen datalla, joka liittyy kyseiseen sairauteen. Menetelmällä voitaisiin tutkia esimerkiksi sitä, miten eri antibioottiyhdistelmät vaikuttavat bakteeritulehduksiin tai miten tehokkaasti eri lääkeaineyhdistelmät tappavat soluja, joihin SARS-Cov-2-koronavirus on hyökännyt.

Julkaisu:

Heli Julkunen, Anna Cichonska, Prson Gautam, Sandor Szedmak, Jane Douat, Tapio Pahikkala, Tero Aittokallio, and Juho Rousu. Leveraging multiway interactions for systematic prediction of pre-clinical drug combination effects. Nature Communications. DOI: 10.1038/s41467-020-19950-z

äپٴᲹ:

Heli Julkunen
Projektitutkija, Aalto-yliopisto
heli.julkunen@aalto.fi

Juho Rousu
Professori, Aalto-yliopisto
Suomen tekoälykeskus FCAI
puh. 050 415 1702
juho.rousu@aalto.fi

Tero Aittokallio
Ryhmänjohtaja, Suomen molekyylilääketieteen instituutti FIMM
Helsingin yliopisto
tero.aittokallio@helsinki.fi

Linkki tutkimusartikkeliin:

Lue lisää

Finnish Center for Artificial Intelligence

Tekoälyn tutkimuksen ja kehittämisen keskus.

  • äٱٳٲ:
  • Julkaistu:
Jaa
URL kopioitu

Lue lisää uutisia

Kolme ihmistä puistossa, taustalla vuoria. Yksi istuu penkillä, kaksi seisoo maisemaa katsellen.
۳ٱ𾱲ٲö, Tutkimus ja taide, Opinnot, Yliopisto Julkaistu:

Hae vierailevaksi professoriksi tai tutkijaksi Université Grenoble Alpes:iin

Unite!-yliopistoallianssiin kuuluva Université Grenoble Alpes (UGA) on avannut haun kansainvälisten tutkijoiden lyhytaikaisille vierailuille.
Keskellä valokuva Eloi Molinerista ja tiimitovereista konferenssin lavalla, ympärillä kuvat palkinnoista.
Palkinnot ja tunnustukset, Tutkimus ja taide Julkaistu:

Tutkijatohtori Eloi Moliner on tehnyt historiaa viisinkertaisena palkinnonsaajana

Eloi Moliner on yksi Aalto-yliopiston palkituimmista väitöskirjatutkijoista; haluamme juhlia hänen menestystään ja panosta signaalinkäsittelyn alalla.
Kaksi ihmistä, Matti Alahuhta ja Sari Baldauf, istuvat harmaissa nojatuoleissa tumman verhon edessä. Toinen pukeutunut siniseen pukuun, toinen ruskeaan mekkoon.
۳ٱ𾱲ٲö, Tutkimus ja taide, Opinnot, Yliopisto Julkaistu:

Kahden miljoonan lahjoitus Aalto-yliopiston uuteen monialaiseen kandidaattiohjelmaan – lahjoittajina Matti Alahuhta, Sari Baldauf, Antti Herlin ja Jorma Ollila

Monialainen kandidaattiohjelma yhdistää tekniikkaa, kauppatieteitä, taiteita ja suunnittelua.
Ohjelman ensimmäinen vuosikurssi aloittaa syksyllä 2027.
Henkilö, jolla on värikäs paita ja ruskea hattu, puhuu mikrofoniin, taustalla kuva metsänäkymästä.
Tutkimus ja taide Julkaistu:

Tutkimus hyvinvoinnista osoittaa: vapaus valita tekee onnellisemmaksi – erityisesti vauraissa ja yksilökeskeisissä maissa

Autonomia eli kokemus siitä, että voi vaikuttaa omaan elämäänsä on yhteydessä hyvinvointiin kaikkialla maailmassa. Tuore tutkimus kertoo, että sen merkitys onnellisuudelle korostuu vauraissa ja yksilökeskeisissä maissa.