黑料网

News

Novel 3D matrix will allow predictive and effective breast cancer treatment

The extracellular matrix keeps the structure of the tumour tissues unchanged and thereby allows correct and personalized drug identification.
The ability of 3D matrix to maintain the cellular identity and heterogeneity of patient derived cancer tissues allow individualized breast cancer therapy approach. Image: Lahja Martikainen, Pauliina Munne and Nonappa.
The ability of 3D matrix to maintain the cellular identity and heterogeneity of patient derived cancer tissues allow individualized breast cancer therapy approach. Image: Lahja Martikainen, Pauliina Munne and Nonappa.

On average, more than 90% of the breast cancer drugs fail in clinical trials with real patients and each failed drug costs 1.4 billion euro. Tekes has now provided a funding of 0.5 million euros for Aalto University and the University of Helsinki to develop and commercialize a novel preclinical model to enhance drug development processes and personalized medicine approaches.

鈥淏y combining cutting edge nanotechnology and advanced cancer biology, we have successfully developed extracellular matrix, a material that mimics the cellular environment of the cancer tissues, keeping the structure of the tumour tissues unchanged and alive for a couple of weeks鈥 time and thereby allowing correct and personalized drug identification for cancer treatment鈥, explains Research Fellow Nonappa from Aalto University.

鈥淭he 3D matrix not only maintains tissue identity, but also heterogeneity of the tumour, which is a key feature of a preclinical model to predict correctly the real drug responses and thus accelerate the process of getting more effective treatments for the breast cancer patients鈥, adds postdoctoral researcher Pauliina Munne from the University of Helsinki.

Need for individualized treatments

In Finland, there are 5000 new breast cancer patients yearly, and globally one in every eight women undergo breast cancer diagnosis at one point in her lifetime. Despite significant increase in the five-year survival rates after detection, breast cancer remains one of the leading causes of death in women.

鈥淲e have failed to treat breast cancer with the current 鈥渙ne size fits all鈥 treatment approaches. The present preclinical models including cell lines and animal tests are faulty, too simplistic and poorly predictive. This is due to their insufficient ability to mimic the original tumour cellular identity and heterogeneity鈥, describes Nonappa.

鈥淭he tumour consists of diverse cell types. If you try to grow a tumour sample on a Petri dish in a laboratory, only certain cell types will survive. The rest will either die or transform to another cell type. Drug response studies are usually performed using immortal cell lines, which represent only one or few cell types. These models are poorly predicting the drug responses in patient, which is evident from the high number of failed drugs in clinical trials鈥, adds Munne.

The successful commercialization team consists of inter-disciplinary team including internationally acclaimed material science group from Aalto University and breast cancer experts from the University of Helsinki together with an established network between Hospital district of Helsinki and Uusimaa, securing the availability of tumour samples.

Further information:

Nonappa
Research Fellow
Aalto University
tel. +358 50 593 1480
nonappa@aalto.fi

Pauliina Munne
Postdoctoral researcher
University of Helsinki
tel. +358 29 412 5494
pauliina.munne@helsinki.fi

  • Updated:
  • Published:
Share
URL copied!

Read more news

The image shows the presence of dark matter in the same region of sky, created using data from NASA鈥檚 Webb telescope in 2026 (right) and from the Hubble Space Telescope in 2007 (left). Credit: NASA/STScI/A. Pagan
Press releases Published:

NASA Reveals New Details About Dark Matter鈥檚 Influence on the Universe

With the Webb telescope鈥檚 unprecedented sensitivity, scientists are learning more about dark matter鈥檚 influence on stars, galaxies, and even planets like Earth.
Text 'Doc+ initiative' with colourful explosion on black background. Slogan: Your skills. Your path. Your impact.
Research & Art, Studies Published:

Enhancing doctoral researchers鈥 work-life skills 鈥 Join the DOC+ events

Doctoral student or postdoc, have you been pondering about building a meaningful doctoral career? Or about the future of AI in research and working life? These events and learning opportunities are for you!
A worker operates a tablet while a robotic arm welds metal, emitting sparks in an industrial setting.
Research & Art Published:

Specialised AI models could be Finland's next global export

Specialised, resource-efficient AI models could be the next competitive edge of our country, and a way to stand out among the use of large language models.
Two people presenting data on Nordic markets. One holds a microphone, the other gestures towards a screen.
Cooperation, Press releases, University Published:

Aalto University to host the INNOVA Europe Summit 2026 in Espoo

Aalto University to host the INNOVA Europe Summit 2026 in Espoo, bringing together Europe鈥檚 next generation of student entrepreneurs.