ºÚÁÏÍø

News

The handedness of light holds the key to better optical control

A new optical modulator could boost the performance of optical technologies in domains from communication to computing
A schematic showing two circular light waves coming from the left, passing through a square representing the modulator, and emerging as a single linear light beam.
A schematic of perfect nonlinear modulation using chiral light beams. (Image. Yi Zhang / Aalto University)

Researchers at Aalto University’s School of Electrical Engineering have developed a new approach to control the properties of a light beam. By using the handedness of the light beam, the technique achieves significantly enhanced performance together with a more compact footprint.

‘Handedness or chirality is everywhere, from electrons to molecules, from our hands to spiral galaxies. Light also has handedness. Our modulation method uses the handedness of light by selecting certain polarizations via the crystal structure of the material in the device. It’s a fundamentally different approach from previous methods,’ says Yi Zhang, the postdoctoral researcher who led the study.

Optical modulators are used to manipulate the properties of a beam of light, such as its intensity, phase, or polarisation. Switching between states (for example, between adjustable and zero intensity) is a cornerstone of optical technologies, such as fibre optic communications, laser-based displays, and optical computing.

Current optical modulators mainly use electrical or acoustic effects to modulate light’s properties indirectly. ‘These two traditional optical modulator technologies can control the properties of light at nanosecond speeds . Our all-optical modulator, which uses a coherent optical process, can work at femtosecond speeds, or about a million times faster,’ Zhang notes.

Zhang believes the technology will be easy to transfer from lab to application, where it offers possible improvements in a wide range of fields, from fibre optics to display technologies. ‘The principle we used to modulate the light more quickly and efficiently is quite clear, and I believe it could be applied very soon,’ Zhang says.

Professor Zhipei Sun, the group leader, says that ‘this new method holds great promise for advanced nonlinear optical devices, computing, and quantum technologies. It also provides extra choices of materials for current devices, which is beneficial for companies that produce optical modulators.’

The study was published in the journal .

  • Updated:
  • Published:
Share
URL copied!

Read more news

Unite! Seed Fund 2026 announcement with a small plant sprouting from soil. Call now open for student activities, teaching, and research.
Cooperation, Research & Art, Studies, University Published:

Unite! Seed Fund 2026: Open for applications

The 2026 Unite! Seed Fund call is officially open, offering funding across three strategic lines: Student Activities, Teaching and Learning, and Research and PhD. Deadline for applications is 20 March 2026.
Text: Unite! Seed Fund for Students 2026. Call now open. Image: Seedling growing from soil.
Cooperation, Research & Art, Studies, University Published:

Apply now: Unite! Seed Fund 2026 - Student Call

The Unite! Seed Fund call for 2026 is now open for students. Apply now for up to €20,000 per project, involving at least two Unite! Universities. Deadline for applications is 20 March 2026.

Text: Belonging and Well-being, Online Workshop Series. Unite! logo and abstract flower design.
Cooperation, University Published:

Join Unite's Well-Being Workshop Series

The interactive Zoom sessions are designed to support doctoral students’ well-being, strengthen a sense of belonging, and offer practical tools for success in their academic journey.
Research & Art Published:

Create your CV easily with the Research.fi profile tool

Aalto University’s researchers can now create a CV using the CV tool in the Research tool service. The tool generates an editable Word CV based on your Research.fi profile information, following the official TENK CV template.