黑料网

News

A breakthrough in photonic time crystals could change how we use and control light

The new discovery could dramatically enhance technologies like lasers, sensor, and optical computing in the near future.
Colourful shapes that represent photonic time crystals
Photonic time crystals are optical materials that exponentially amplify light. Photo: Xuchen Wang

An international research team has for the first time designed realistic photonic time crystals 鈥 exotic materials that exponentially amplify light. The breakthrough opens up exciting possibilities across fields such as communication, imaging, and sensing by laying the foundations for faster and more compact lasers, sensors and other optical devices.

鈥淭his work could lead to the first experimental realization of photonic time crystals, propelling them into practical applications and potentially transforming industries. From high-efficiency light amplifiers and advanced sensors to innovative laser technologies, this research challenges the boundaries of how we can control the light-matter interaction,鈥 says Assistant Professor Viktar Asadchy from Aalto University, Finland.

Photonic time crystals represent a unique class of optical materials. Unlike traditional crystals, which have spatially repeating structures, photonic time crystals remain uniform in space but exhibit a periodic oscillation in time. This distinctive quality creates 鈥渕omentum band gaps,鈥 or unusual states where light pauses inside the crystal while its intensity grows exponentially over time. To grasp the peculiarity of light鈥檚 interaction within a photonic time crystal, imagine light traversing a medium that switches between air and water quadrillions of times per second 鈥 a remarkable phenomenon that challenges our conventional understanding of optics.

Unlocking new possibilities

One potential application for the photonic time crystals is in nanosensing. 

鈥淚magine we want to detect the presence of a small particle, such as a virus, pollutant, or biomarker for diseases like cancer. When excited, the particle would emit a tiny amount of light at a specific wavelength. A photonic time crystal can capture this light and automatically amplify it, enabling more efficient detection with existing equipment,鈥 says Asadchy. 

Creating photonic time crystals for visible light has long been challenging due to the need for extremely rapid yet simultaneously large-amplitude variation of material properties. To date, the most advanced experimental demonstration of photonic time crystals 鈥 developed by members of the same research team 鈥 has been limited to much lower frequencies, such as microwaves. In their latest work, the team proposes, through theoretical models and electromagnetic simulations, the first practical approach to achieving 鈥渢ruly optical鈥 photonic time crystals. By using an array of tiny silicon spheres, they predict that the special conditions needed to amplify light that were previously out of reach can finally be achieved in the lab using known optical techniques.

The team consisted of researchers from Aalto University, University of Eastern Finland, Karlsruhe Institute of Technology, and Harbin Engineering University. The research was recently published in . 

More information

Read more

 Time varying interface and light

A new type of photonic time crystal gives light a boost

The researchers created photonic time crystals that operate at microwave frequencies, and they showed that the crystals can amplify electromagnetic waves.

News
  • Updated:
  • Published:
Share
URL copied!

Read more news

An eye by Matti Ahlgren.
Press releases Published:

New macular degeneration treatment the first to halt disease鈥檚 progression

Aalto University researchers have uncovered a promising way to treat the dry form of the age- related macular degeneration (AMD) in the early diagnosis phase that could potentially stop its progression. The novel treatment approach aims to strengthen the protective mechanisms of affected cells using heat, explains Professor Ari Koskelainen.
Left: Daniela da Silva Fernandes, right: Robin Welsch.
Press releases Published:

AI use makes us overestimate our cognitive performance

New research warns we shouldn鈥檛 blindly trust Large Language Models with logical reasoning 鈥撯 stopping at one prompt limits ChatGPT鈥檚 usefulness more than users realise.
Hitesh Monga wearing Tutor in Aalto University shirt and overalls, standing in front of a brick wall with metal artwork
Studies Published:

Hitesh Monga shaped his path in Aalto from a summer intern to a master鈥檚 graduate

Hitesh Monga, graduate from Communication Engineering master's major, shares the path that lead him 黑料网 and beyond
Assistant professor Lauri Uotinen in the Underground Research Laboratory. The rock wall behind him features two automatically detectable markers used in photogrammetry
Appointments Published:

Meet Lauri Uotinen, assistant professor of rock engineering

Lauri Uotinen combines photogrammetry and rock engineering to create new insights into underground spaces.