News

A combination of wood fibres and spider silk could rival plastic

The unique material outperforms most of today’s synthetic and natural materials by providing high strength and stiffness, combined with increased toughness
Hämähäkkisilkki
Silk is a natural protein that can also be produced synthetically. It has good abilities and versatile possibilities. Photo: Eeva Suorlahti

Achieving strength and extensibility at the same time has so far been a great challenge in material engineering: increasing strength has meant losing extensibility and vice versa. Now Aalto University and VTT researchers have succeeded in overcoming this challenge, with inspiration from nature.

The researchers created a truly new bio-based material by gluing together wood cellulose fibres and the silk protein found in spider web threads. The result is a very firm and resilient material which could be used in the future as a possible replacement for plastic, as part of bio-based composites and in medical applications, surgical fibres, the textile industry and packaging.

According University Professor Markus Linder, nature offers great ingredients for developing new materials, such as firm and easily available cellulose and tough and flexible silk as used in this research. The advantage with both of these materials is that, unlike plastic, they are biodegradable and do not damage nature the same way micro-plastics do.

‘Our researchers just need to be able to reproduce the natural properties’, adds Linder, who was also leading the research.

‘We used birch tree pulp, broke it down to cellulose nanofibrils and aligned them into a stiff scaffold. At the same time, we infiltrated the cellulosic network with a soft and energy dissipating spider silk adhesive matrix,’ says Research Scientist Pezhman Mohammadi from VTT.

Silk is a natural protein which is excreted by animals like silkworms and also found in spider web threads. The spider web silk used by Aalto University researchers, however, is not actually taken from spider webs but is instead produced by the researchers using bacteria with synthetic DNA.

‘Because we know the structure of the DNA, we can copy it and use this to manufacture silk protein molecules which are chemically similar to those found in spider web threads. The DNA has all this information contained in it’, Linder explains.

‘Our work illustrates the new and versatile possibilities for protein engineering. In the future, we could manufacture similar composites with slightly different building blocks and achieve a different set of characteristics for other applications. Currently, we are working on making new composite materials as implants, impact resistance objects and other products,” says Pezhman.

The research project is part of the work of the  (HYBER). 

The research was published in Science Advances 13 September. (Science Advances)

More information:

Markus Linder
Professor, Aalto University
+358 50 431 5525
markus.linder@aalto.fi 

Pezhman Mohammadi
Research Scientist, VTT
+358 40 163 7835
pezhman.mohammadi@vtt.fi

Christopher Landowski
Research Team Leader, VTT
+358 40 482 0856
christopher.landowski@vtt.fi

Read more

Kuva osoittaa, miten valmistetaan biosynteettistä hämähäkinseittiä suurjännitteen avulla

Spider silk is created by adding spider DNA to microbes

Researchers studying spiders have produced a synthetic biomaterial that can, in future, be used to make a multitude of products from clothes to car parts.

News
  • Updated:
  • Published:
Share
URL copied!

Read more news

Three people in a park with mountains in the background. One sits on a bench, two stand facing the scenery.
Cooperation, Research & Art, Studies, University Published:

Apply to be a guest professor or visiting researcher at the Université Grenoble Alpes

Unite! partner, Université Grenoble Alpes (UGA) has opened a call to host international professors and researchers for short stays.
A group of people in a meeting room watching a presentation on a large screen. Laptops and coffee mugs are on the table.
Studies Published:

Floriane presents research findings on denim recycling

On 15 January 2026, Floriane Jacquin, an intern with the Textile Chemistry Group at Aalto University, presented the findings.
Centre photo of Eloi Moliner and teammates on conference stage, surrounded by images of his awards.
Awards and Recognition, Research & Art Published:

Postdoctoral researcher Eloi Moliner makes history as a 5-time award winner

Eloi Moliner is one of the most decorated doctoral researchers in Aalto University's history – we would like to highlight his success and contributions to the field of audio signal processing
A person wearing a colourful shirt and brown hat speaks into a microphone with a background of an image of a forest.
Research & Art Published:

Having autonomy in your life is more important in wealthier countries, says new research on well-being

A worldwide analysis reveals a nuanced relationship between happiness, volition and wealth.