黑料网

News

An atomic-scale window into superconductivity paves the way for new quantum materials

Researchers have demonstrated a new technique to measure the quantum excitations in superconducting materials with atomic precision for the first time. Detecting these excitations is an important step towards understand exotic superconductors, which could help us improve quantum computers and perhaps even pave the way towards room-temperature superconductors.
Artist illustration of Andreev reflection.
Illustration of Andreev reflection between a superconductor and an atomically sharp metal tip. Image: Aalto University / Jose Lado.

Superconductors are materials with no electrical resistance whatsoever, commonly requiring extremely low temperatures. They are used in a wide range of domains, from medical applications to a central role in quantum computers. Superconductivity is caused by specially linked pairs of electrons known as Cooper pairs. So far, the occurrence of Cooper pairs has been measured indirectly macroscopically in bulk, but a new technique developed by researchers at Aalto University and Oak Ridge National Laboratories in the US can detect their occurrence with atomic precision.

The experiments were carried out by Wonhee Ko and Petro Maksymovych at Oak Ridge National Laboratory, with the theoretical support of Professor Jose Lado of Aalto University. Electrons can 鈥渜uantum tunnel鈥 across energy barriers, jumping from one system to another through space in a way that cannot be explained with classical physics. For example, if an electron pairs with another electron right at the point where a metal and superconductor meet, it could form a Cooper pair that enters the superconductor while also 鈥渒icking back鈥 another kind of particle into the metal in a process known as Andreev reflection. The researchers looked for these Andreev reflections to detect Cooper pairs.

To do this, they measured the electrical current between an atomically sharp metallic tip and a superconductor, as well as how the current depended on the separation between the tip and the superconductor. This enabled them to detect the amount of Andreev reflection going back to the superconductor, while maintaining an imaging resolution comparable to individual atoms. The results of the experiment corresponded exactly to Lado鈥檚 theoretical model.

This experimental detection of Cooper pairs at the atomic scale provides an entirely new method for understanding quantum materials. For the first time, researchers can uniquely determine how the wavefunctions of Cooper pairs are reconstructed at the atomic scale and how they interact with atomic-scale impurities and other obstacles.

'This technique establishes a critical new methodology for understanding the internal quantum structure of exotic types of superconductors known as unconventional superconductors, potentially allowing us to tackle a variety of open problems in quantum materials,' Lado says. Unconventional superconductors are a potential fundamental building block for quantum computers and could provide a platform to realise superconductivity at room temperature. Cooper pairs have unique internal structures in unconventional superconductors which so far have been challenging to understand.

This discovery allows for the direct probing of the state of Cooper pairs in unconventional superconductors, establishing a critical new technique for a whole family of quantum materials. It represents a major step forward in our understanding of quantum materials and helps push forward the work of developing quantum technologies.
 

Original publication:

Noncontact Andreev Reflection as a Direct Probe of Superconductivity on the Atomic Scale


Contact information:

Jose Lado
Assistant professor
+358503133730
jose.lado@aalto.fi

  • Updated:
  • Published:
Share
URL copied!

Read more news

Unite! Seed Fund 2026 announcement with a small plant sprouting from soil. Call now open for student activities, teaching, and research.
Cooperation, Research & Art, Studies, University Published:

Unite! Seed Fund 2026: Open for applications

The 2026 Unite! Seed Fund call is officially open, offering funding across three strategic lines: Student Activities, Teaching and Learning, and Research and PhD. Deadline for applications is 20 March 2026.
Text: Unite! Seed Fund for Students 2026. Call now open. Image: Seedling growing from soil.
Cooperation, Research & Art, Studies, University Published:

Apply now: Unite! Seed Fund 2026 - Student Call

The Unite! Seed Fund call for 2026 is now open for students. Apply now for up to 鈧20,000 per project, involving at least two Unite! Universities. Deadline for applications is 20 March 2026.

Text: Belonging and Well-being, Online Workshop Series. Unite! logo and abstract flower design.
Cooperation, University Published:

Join Unite's Well-Being Workshop Series

The interactive Zoom sessions are designed to support doctoral students鈥 well-being, strengthen a sense of belonging, and offer practical tools for success in their academic journey.
Research & Art Published:

Create your CV easily with the Research.fi profile tool

Aalto University鈥檚 researchers can now create a CV using the CV tool in the Research tool service. The tool generates an editable Word CV based on your Research.fi profile information, following the official TENK CV template.