Breakthrough achieved in improving the ionic conductivity of fuel cell materials
The researchers at Aalto University developed synthesis and processing routes for development of ceramic nanocomposite materials, which resulted in a breakthrough in improving the ionic conductivity of the fuel cell electrolyte materials.
A record high ionic conductivity of 0.55 S/cm at 550oC has been achieved at Aalto University. Fuel cells fabricated using these nanocomposite materials produced an outstanding performance of 1.06 W/cm2.
Ceramic fuel cell technology has a tremendous potential for sustainable clean energy production. With the help of these superionic nanocomposite materials, the operating temperature of the fuel cells can be significantly reduced. This low temperature operation helps in improving the long-term stability of the devices.
'With the help of these superionic materials, the losses due to ionic transport in the electrolyte layer are dramatically reduced, which makes it possible to produce fuel cells performing over 1W/cm2. We envision to reach a fuel cell performance of 2.5 W/cm2 by depositing these potential materials with modern printing method', Docent, Dr. Muhammad Imran Asghar says.
This work is a part of an EU-Indigo project funded by the Academy of Finland. The partners in the project include Aalto University, University of Oslo, University of Aveiro, Indian Institute of Technology – Delhi, CGRI – CSIR Kolkata and VESTEL Turkey.
The synthesized superionic materials were characterized with various microscopic (SEM, TEM), spectroscopic techniques (XRD, Raman, FTIR) and other analyses (BET analysis, DSC, TGA) techniques. The high performance fuel cells were characterized using electrochemical impedance spectroscopy and voltage/current-density measurements.
Details regarding the results can be found in the articles published in International Journal of Hydrogen energy and Frontiers of Chemical Science and Engineering.
Research articles:
Muhammad Imran Asghar, Sakari Lepikko, Janne Patakangas, Janne Halme, Peter Lund. . Frontiers of Chemical Science and Engineering, in press, 2017. DOI: 10.1007/s11705-017-1642-2
Ieeba Khan, Muhammad Imran Asghar, Peter Lund, Suddhasatwa Basu. High conductive (LiNak)2CO3-Ce0.85Sm0.15O2 electrolyte compositions for IT-SOFC applications. International Journal of Hydrogen Energy, in press, 2017.
Contact:
Dr. Muhammad Imran Asghar (Adjunct Professor)
New Energy Technologies Group
Aalto University, Dept. of Applied Physics
tel: +358 50 344 1659
Imran.asghar@aalto.fi
Read more news
Aalto Inventors innovation training coming for hydrogen, quantum and microelectronics researchers this spring
Connect with industry and academic thought-leaders and gain widely applicable skills in communication, intellectual property, and business.
Seizing opportunities — Vuong Vo’s path led through Aalto University and VTT to build the protein factory of the future
Vuong Vo's path led through Aalto University and VTT to a startup, where he is helping build the protein factory of the future.Growing Materials, Growing Ideas: Inside the BioMaker Studio
At Aalto University’s BioMaker Studio, initiated by Ena Naito, students and researchers experiment with living materials, from algae to mycelium, creating an open, interdisciplinary space where design, biology, and collaboration grow together.