ºÚÁÏÍø

News

CEST researchers pave the way for calculating circular dichroism (CD) spectra more efficiently

Researchers led by Xi Chen have published a new study to calculate CD spectra of metal nanoclusters in an improved manner
A graphic showing CD spectra of a metal nanocluster
Graphic taken from Makkonen et al. J. Chem. Phys. 154, 114102 (2021)
A photo showing researcher Esko Makkonen
First author Esko Makkonen

Members of the CEST group published a recent paper introducing a novel method to calculate CD spectra in the open source GPAW code. The publication shows that the implemented approach is more efficient than the commonly used linear-response method and can easily calculate CD spectra of nanoscale systems, such as hybrid silver clusters composed of over 1000 atoms.

Recording CD spectra is a very powerful method to study the chiral optical properties and detect small structure changes in chiral molecules, DNA, proteins and nanoclusters, to name a few. However, the computational cost of commonly used linear-response time-dependent density functional theory (TDDFT) methodology increases drastically with the system size under observation, and can typically only be applied to small systems. To overcome this challenge, researchers Esko MakkonenTuomas RossiPatrick Rinke and Xi Chen worked with collaborators from Jyväskylä, Spain and Colombia to implement a more efficient approach based on real-time TDDFT to calculate CD spectra. The published code offers both linear combination of atomic orbitals (LCAO) and grid modes. The LCAO mode is beneficial for large systems, while the grid mode is suitable for small molecules and benchmark purposes, thus making this new method extremely versatile.

The authors tested this new implementation on various systems. In all test cases, the calculations show high efficiency and agree well with experimental results and reference computations. Driven by this initial success, the group is now ready to study many more chiral nanoclusters. The aim of this work is to discover the origin of chiral optical properties in nanoclusters, and design metal clusters which are useful as chiral sensors.

This paper is published in The Journal of Chemical Physics.

  • Updated:
  • Published:
Share
URL copied!

Read more news

The image shows the presence of dark matter in the same region of sky, created using data from NASA’s Webb telescope in 2026 (right) and from the Hubble Space Telescope in 2007 (left). Credit: NASA/STScI/A. Pagan
Press releases Published:

NASA Reveals New Details About Dark Matter’s Influence on the Universe

With the Webb telescope’s unprecedented sensitivity, scientists are learning more about dark matter’s influence on stars, galaxies, and even planets like Earth.
Text 'Doc+ initiative' with colourful explosion on black background. Slogan: Your skills. Your path. Your impact.
Research & Art, Studies Published:

Enhancing doctoral researchers’ work-life skills – Join the DOC+ events

Doctoral student or postdoc, have you been pondering about building a meaningful doctoral career? Or about the future of AI in research and working life? These events and learning opportunities are for you!
A worker operates a tablet while a robotic arm welds metal, emitting sparks in an industrial setting.
Research & Art Published:

Specialised AI models could be Finland's next global export

Specialised, resource-efficient AI models could be the next competitive edge of our country, and a way to stand out among the use of large language models.
#65 in the world in business & economics THE World University Rankings 2026 by Subject on a yellow background.
Research & Art Published:

Business & economics and computer science ranked in top 100 globally

The Times Higher Education ranking measures universities with 18 indicators, including international research and citations