ºÚÁÏÍø

News

Engineered metasurfaces reflect waves in unusual directions

Developed at Aalto University, new metasurfaces can reflect light or sound waves into any desired direction or even split energy into more than one direction
Aalto University / Metasurface / photo: Sergei Tretyakov
Metasurface

In our day lives, we can find many examples of manipulation of reflected waves such as mirrors to see our reflections or reflective surfaces for sound that improve auditorium acoustics. When a wave impinges on a reflective surface with a certain angle of incidence and the energy is sent back, the angle of reflection is equal to the angle of incidence. This classical reflection law is valid for any homogenous surface. Researchers at Aalto University have developed new metasurfaces for the arbitrary manipulation of reflected waves, essentially breaking the law to engineer the reflection of a surface at will.

Metasurfaces are artificial structures, composed of periodic arranged of meta-atoms at subwavelength scale. Meta-atoms are made of traditional materials but, if they are placed in a periodic manner, the surface can show many unusual effects that cannot be realized by the materials in nature. In their article published 15 February 2019 in Science Advances, the researchers use power-flow conformal metasurfaces to engineer the direction of reflected waves.

Aalto University / Schematic representation of the functionality implemented with the metasurface /  Ana Diaz-Rubio
New metasurfaces can reflect light or sound waves into any desired direction.

‘Existing solutions for controlling reflection of waves have low efficiency or difficult implementation,’ says Ana Díaz-Rubio, postdoctoral researcher at Aalto University. ‘We solved both of those problems. Not only did we figure out a way to design high efficient metasurfaces, we can also adapt the design for different functionalities. These metasurfaces are a versatile platform for arbitrary control of reflection.’

‘This is really an exciting result. We have figured out a way to design such a device and we test it for controlling sound waves. Moreover, this idea can be applied to electromagnetic fields,’ Ana explains.

This work received funding from the Academy of Finland. The article was published in the online version of the journal on 15 February 2019.

  • Updated:
  • Published:
Share
URL copied!

Read more news

AI-on-Demand
Research & Art Published:

AI-on-Demand platform expands to accelerate European AI innovation across research and industry

Aalto University’s Center for Knowledge and Innovation Research (CKIR) is proud to contribute
Person wearing a patterned knit sweater and grey turtleneck in a science laboratory with metal equipment in the background.
Awards and Recognition, Research & Art Published:

Postdoctoral researcher Bayan Karimi wins 2025 Young Scientist Prize

The prize is the 2025 IUPAP Young Scientist Prize for the Commission on Low Temperature Physics (C5).
Environmental Engineering new flow channel in Otaniemi, with students and teaching staff
Research & Art Published:

Significant funding from Maa- ja vesitekniikan tuki for Olli Varis's research group

The InnoWAT project strengthens education in the water sector
Artistic illustration: Algorithms over a computer chip
Research & Art Published:

Aalto computer scientists in STOC 2025

Two papers from Aalto Department of Computer Science were accepted to the Symposium on Theory of Computing (STOC).