Finnish Cultural Foundation awards Kunal Ghosh with PhD grant
Kunal Ghosh (CEST group) explores data efficient machine learning methods in his doctoral studies. These methods enable applications in novel materials discovery such as organic electronics to build solar cells, as one example.
Ghosh has now received a one-year grant for doctoral students from the Finnish Cultural Foundation to continue his studies in this direction.
The research funded by this grant tackles the fundamental problem of how to compile good quality material datasets. Such datasets have become an important resource in materials science as they enable machine-learning based predictions of properties, for novel or improved materials. Ghosh is developing an active machine learning approach that explores a large materials space and iteratively compiles a target dataset for a specific materials design or optimization task. Datasets compiled with active learning are smaller than conventional datasets assembled by human intuition and facilitate more accurate and more targeted predictions. In his PhD, Ghosh is using his active learning algorithm to build up a dataset of organic molecules with optimal properties for application in organic electronics, e.g. organic light emitting or photovoltaic devices. In conclusion, machine learning models greatly benefit from better training datasets- and the outcome has the potential to impact the field of data-driven material science, where machine learning is now ubiquitously applied.
Read more news
Business & economics and computer science ranked in top 100 globally
The Times Higher Education ranking measures universities with 18 indicators, including international research and citations
Unite! Seed Fund 2026: Open for applications
The 2026 Unite! Seed Fund call is officially open, offering funding across three strategic lines: Student Activities, Teaching and Learning, and Research and PhD. Deadline for applications is 20 March 2026.