Holding an object requires smooth interaction between high and low brain frequencies
Holding a glass requires a high degree of precision in the force we apply with the hands. Although effortless, this task requires continuous adjustment of the force and finger position based on sensory information. The research team set out to better understand the neuronal mechanisms enabling us to achieve this demanding skilled task.
The researchers recorded magnetoencephalographic (MEG) brain activity from adult volunteers who pinched the handle of a device to record grip force. The analysis focused on the coupling of the brain activity with minor hand vibrations during the steady pinch.
The results showed that the brain regulates the grip force based on the low-frequency, below 3 Hz, content of sensory signals generated by proprioceptors in the hand. The proprioceptors are sensory organs that monitor the position of body parts.
Researchers recorded MEG signals from healthy volunteers (left) who pinched the handle of a device that monitored the contraction force (right). The results showed that the brain speaks to the muscles at 20 Hz (rightwards arrow) and listens to them at 3 Hz (leftwards arrow). Picture: Modified from Bourguignon et al. 2017.
The finding contradicts previous studies, which had contemplated the possibility that the brain would make use of signals at higher frequencies around 20 Hz. Indeed, 20 Hz is the dominant frequency of the oscillatory brain activity that arises from the sensorimotor cortex, the part of the brain that controls motor actions and monitors tactile and proprioceptive information. Moreover, the signals from the brain and the contracting muscle are coherent at 20 Hz.
鈥淭he research team now demonstrated that the brain speaks to the muscles and listens to them at different frequencies, at 20 Hz and at less than 3 Hz, respectively鈥, describes researcher Mathieu Bourguignon.
This study was carried out at the Department of Neuroscience and Biomedical Engineering of the Aalto University and was published in the Journal of Neuroscience. The lead author, Mathieu Bourguignon is currently working at the ULB Neuroscience Institute in Brussels.
Further information:
Mathieu Bourguignon
Researcher
Aalto University, ULB Neuroscience Institute in Brussels
mabourgu@ulb.ac.be
Riitta Hari
Professor emerita
Aalto University
riitta.hari@aalto.fi
Article: Mathieu Bourguignon, Harri Piitulainen, Eero Smeds, Guangyu Zhou, Veikko Jousm盲ki and Riitta Hari: MEG insight into the spectral dynamics underlying steady isometric muscle contraction. .
Read more news
Having autonomy in your life is more important in wealthier countries, says new research on well-being
A worldwide analysis reveals a nuanced relationship between happiness, volition and wealth.
Retail therapy fail? Online shopping linked to stress, says study
Shopping, social media use and gaming are the most likely online activities to correlate with stress, according to a new study
Aalto Inventors innovation training coming for hydrogen, quantum and microelectronics researchers this spring
Connect with industry and academic thought-leaders and gain widely applicable skills in communication, intellectual property, and business.