黑料网

News

How does hydrogen actually work as a fuel? Research project receives 1.7 million euros to study hydrogen combustion

The goal of the project financed by Business Finland is to speed up the development of emission-free marine technology, among other things.
Pyo虉rteileva虉, turbulentti vetyiekki (simulointikuva). Ilya Morev ja Ville Vuorinen, Aalto-yliopisto
Preliminary simulations of hydrogen flames. The picture shows a swirling, turbulent flame. Photo: Ilya Morev & Ville Vuorinen, Aalto University.

The combustion of hydrogen and its derivative fuels, such as ammonia, produces no carbon dioxide emissions and thus it plays a central role in Finnish and European efforts to become less dependent on fossil fuels. The EU has set a goal to have clean, low-carbon hydrogen and derivative fuels account for almost a fifth of end-use energy by 2050.

Business Finland has granted 1.7 million euros in funding to the HENNES research project, which studies the physics and chemistry of hydrogen combustion. Among the universities involved in the project are Aalto University and the University of Turku. The research is part of 奥盲谤迟蝉颈濒盲's Zero Emission Marine ecosystem project, which aims to contribute to the development of zero-emission marine technology, among other things.

鈥橦ydrogen-fuelled combustion engines have been the object of many studies, but they have not been adopted in the production of electricity or transportation, as little basic knowledge exists on how hydrogen combusts inside an engine. We need deeper insights and understanding of its thermodynamics, flow mechanics, nitrogen oxides emissions and combustion,鈥 says Ville Vuorinen, Professor of fluid physics and energy technology of the Aalto University Department of Mechanical Engineering. Professor Simo Hostikka, who specialises in fire safety engineering, will also participate in the project from Aalto University.

Combining 3D simulation methods with experimental research is at the core of the research. It is a research project investigating the basic properties of hydrogen, the results of which can be used by both the scientific community and industry.

Close cooperation of research and product development in a key role

Hydrogen differs from traditional fuels in terms of its thermodynamic and chemical properties and behaves differently in combustion processes. The ignition sensitivity of hydrogen and the small size of the molecule also pose challenges for both combustion control and hydrogen storage.

Accurate modeling of hydrogen combustion is a very challenging problem in computational physics and chemistry, the understanding of which is important when designing efficient combustion processes. Information is needed, for example, to store liquid hydrogen and to develop and design heat exchangers and vaporizers used in energy transfers.

Professor Vuorinen鈥檚 research team will focus especially on burner flames and combustion phenomena inside combustion engines, while Professor Hostikka鈥檚 team will study the fire safety of hydrogen.

Armin Wehrfritz, Assistant Professor of mechanical engineering at the University of Turku, and his research group investigate the thermodynamic and phase-change properties of hydrogen and hydrogen-derived fuels, in particular with respect to applications of fuel storage and supply systems.

"Reducing climate emissions and developing a fossil-free energy and transport sector requires close cooperation between academic research and corporate product development. Hydrogen fuel has great potential, especially in marine sector, but the development of the hydrogen value chain from production, storage, transport to fuel utilization requires a thorough understanding of hydrogen's properties. The HENNES project enables precisely such holistic research and development of the use of hydrogen," says Wehrfritz.

Such insight is needed for instance to develop and design heat exchanges and vaporizers used to store liquid hydrogen. The work at University of Turku will further include model development for near-wall flames with a focus on the interaction of turbulence and chemistry.

In the project, researchers use open-source simulation tools to find out how hydrogen behaves, for example, in engines and burners important to industry and in heat exchangers used in energy transfer. Simulations can also be used to study hydrogen fire safety. With the help of new information, it is possible to design even more efficient and durable internal combustion engines that run on hydrogen, which in turn promotes the use of carbon-free energy worldwide.

Through research, 奥盲谤迟蝉颈濒盲 gets valuable information about technology solutions aimed at green fuels.

鈥湴旅ぐ俨蹙北裘 is committed to the development of engines using carbon free fuels, both for marine applications and stationary power plants supporting electrical grids, and the modelling of hydrogen combustion is essential for the engine performance optimization鈥, Jari Hyv枚nen from 奥盲谤迟蝉颈濒盲 Marine Power鈥檚 R&D emphasises. 

Aalto University's share of the funding granted by Business Finland is EUR 1.1 million euros, and the University of Turku's share is EUR 0.6 million euros. In addition to 奥盲谤迟蝉颈濒盲 as the lead company in the ZEM ecosystem, the industry partners in the project are AGCO Power, Oilon, Finno Exergy, Vahterus, Auramarine, KK-Palokonsultti Oy and P2X Solutions.

For more information:

Aalto University
Professor Ville Vuorinen
tel. +358 50 361 1471
ville.vuorinen@aalto.fi

Professor Simo Hostikka
tel. +358 50 447 1582
simo.hostikka@aalto.fi

University of Turku
Assistant Professor Armin Wehrfritz
tel. +358 50 569 6710
armin.wehrfritz@utu.fi

奥盲谤迟蝉颈濒盲
Jari Hyv枚nen, General Manager
tel. +358 40 0930978
jari.hyvonen@wartsila.com

  • Updated:
  • Published:
Share
URL copied!

Read more news

An eye by Matti Ahlgren.
Press releases Published:

New macular degeneration treatment the first to halt disease鈥檚 progression

Aalto University researchers have uncovered a promising way to treat the dry form of the age- related macular degeneration (AMD) in the early diagnosis phase that could potentially stop its progression. The novel treatment approach aims to strengthen the protective mechanisms of affected cells using heat, explains Professor Ari Koskelainen.
Left: Daniela da Silva Fernandes, right: Robin Welsch.
Press releases Published:

AI use makes us overestimate our cognitive performance

New research warns we shouldn鈥檛 blindly trust Large Language Models with logical reasoning 鈥撯 stopping at one prompt limits ChatGPT鈥檚 usefulness more than users realise.
Six white faces surround a central purple face with a smiling expression on a yellow background.
Press releases Published:

Researcher cracks new 鈥榢issing number鈥 bounds 鈥 besting AI in the process

researcher found three new bounds for the famous mathematical 鈥榢issing number鈥 dilemma
Close-up of a complex scientific instrument with golden components and various wires, in a laboratory setting.
Press releases Published:

Time crystals could power future quantum computers

A time crystal, a long-life quantum system approaching perpetual motion, has been hooked up to its environment for the first time, unlocking an intriguing way to increase quantum computational and sensing power.