ºÚÁÏÍø

News

More durable airplanes and buildings possible after physicists untangle engineering paradox

A team of researchers combined statistical physics and fracture mechanics to explain why cracks and faults travel faster when stress in materials is allowed to relax once in a while.
Two images of a cracked wall, the left one light grey and the right one dark grey.
Illustration: Margot Lepetit/Aalto University.

Cracks and faults are everywhere from tiny fractures in aircraft components to stress-induced wear in bridges, pipelines, and medical devices. Predicting when and how faults grow is a key challenge in engineering and materials science. Solving it could help engineers make components, materials and even buildings last longer.

Now, researchers from Aalto University’s Department of Applied Physics have uncovered a new way to describe how structural cracks expand using statistical physics. Their insights help untangle a long-standing paradox in fracture mechanics and could improve the reliability and durability of everything affected by cracks and faults. 

The findings were published in Physical Review Letters: .

In practice, materials are subjected to either static or periodic loads. Static loads—for example in stationary infrastructure like buildings—can cause slow creep deformation, and periodic loads—like those in rotating machinery or aircraft structures—lead to fatigue, where cracks advance over many cycles.

‘Fatigue cracks grow faster when stress relaxes between cycles. This has puzzled engineers for years because it would be more intuitive that stress without breaks resulted in faster-growing cracks,’ lead author and Postdoctoral Researcher Tero Mäkinen explains.

Mäkinen and members of the Complex Systems and Materials research group at Aalto showed that cracks don’t grow steadily but advance in intermittent bursts, overcoming microscopic barriers inside the material. This insight, drawn from statistical physics, combined with a new length scale discovered by the team describing the processes happening in the material just before the advancing fault, helps explain the paradox.

‘The work provides a missing link between empirical fatigue models and physics-based fracture theories. We created an experimentally measurable length scale that captures the material’s plasticity history and crack closure effects. This means we can now better predict failure and improve how new materials are designed,’ the group leader Professor Mikko Alava says.

The study provides a new way to describe crack growth in real-world materials, including construction and engineering staples like steel, aluminum and titanium.

‘The results could lead to more accurate lifetime predictions in industries where failure prevention is critical, including aerospace, civil engineering, and medical devices,’ Mäkinen concludes.

The work was carried out using the computational resources from Aalto’s Science-IT project and funded by Research Council of Finland (especially the Fluctuations in Fracture project).

More information:

Complex Systems and Materials (CSM)

Applies statistical physics to a wide variety of cross-disciplinary topics.

Department of Applied Physics
Piece of code on the computer screen, colourful text

Science-IT

Infrastructure for high-level computational research.

Services
  • Updated:
  • Published:
Share
URL copied!

Read more news

Three people in a park with mountains in the background. One sits on a bench, two stand facing the scenery.
Cooperation, Research & Art, Studies, University Published:

Apply to be a guest professor or visiting researcher at the Université Grenoble Alpes

Unite! partner, Université Grenoble Alpes (UGA) has opened a call to host international professors and researchers for short stays.
A group of people in a meeting room watching a presentation on a large screen. Laptops and coffee mugs are on the table.
Studies Published:

Floriane presents research findings on denim recycling

On 15 January 2026, Floriane Jacquin, an intern with the Textile Chemistry Group at Aalto University, presented the findings.
Centre photo of Eloi Moliner and teammates on conference stage, surrounded by images of his awards.
Awards and Recognition, Research & Art Published:

Postdoctoral researcher Eloi Moliner makes history as a 5-time award winner

Eloi Moliner is one of the most decorated doctoral researchers in Aalto University's history – we would like to highlight his success and contributions to the field of audio signal processing
A person wearing a colourful shirt and brown hat speaks into a microphone with a background of an image of a forest.
Research & Art Published:

Having autonomy in your life is more important in wealthier countries, says new research on well-being

A worldwide analysis reveals a nuanced relationship between happiness, volition and wealth.