ºÚÁÏÍø

News

More durable airplanes and buildings possible after physicists untangle engineering paradox

A team of researchers combined statistical physics and fracture mechanics to explain why cracks and faults travel faster when stress in materials is allowed to relax once in a while.
Two images of a cracked wall, the left one light grey and the right one dark grey.
Illustration: Margot Lepetit/Aalto University.

Cracks and faults are everywhere from tiny fractures in aircraft components to stress-induced wear in bridges, pipelines, and medical devices. Predicting when and how faults grow is a key challenge in engineering and materials science. Solving it could help engineers make components, materials and even buildings last longer.

Now, researchers from Aalto University’s Department of Applied Physics have uncovered a new way to describe how structural cracks expand using statistical physics. Their insights help untangle a long-standing paradox in fracture mechanics and could improve the reliability and durability of everything affected by cracks and faults. 

The findings were published in Physical Review Letters: .

In practice, materials are subjected to either static or periodic loads. Static loads—for example in stationary infrastructure like buildings—can cause slow creep deformation, and periodic loads—like those in rotating machinery or aircraft structures—lead to fatigue, where cracks advance over many cycles.

‘Fatigue cracks grow faster when stress relaxes between cycles. This has puzzled engineers for years because it would be more intuitive that stress without breaks resulted in faster-growing cracks,’ lead author and Postdoctoral Researcher Tero Mäkinen explains.

Mäkinen and members of the Complex Systems and Materials research group at Aalto showed that cracks don’t grow steadily but advance in intermittent bursts, overcoming microscopic barriers inside the material. This insight, drawn from statistical physics, combined with a new length scale discovered by the team describing the processes happening in the material just before the advancing fault, helps explain the paradox.

‘The work provides a missing link between empirical fatigue models and physics-based fracture theories. We created an experimentally measurable length scale that captures the material’s plasticity history and crack closure effects. This means we can now better predict failure and improve how new materials are designed,’ the group leader Professor Mikko Alava says.

The study provides a new way to describe crack growth in real-world materials, including construction and engineering staples like steel, aluminum and titanium.

‘The results could lead to more accurate lifetime predictions in industries where failure prevention is critical, including aerospace, civil engineering, and medical devices,’ Mäkinen concludes.

The work was carried out using the computational resources from Aalto’s Science-IT project and funded by Research Council of Finland (especially the Fluctuations in Fracture project).

More information:

Complex Systems and Materials (CSM)

Applies statistical physics to a wide variety of cross-disciplinary topics.

Department of Applied Physics
Piece of code on the computer screen, colourful text

Science-IT

Infrastructure for high-level computational research.

Services
  • Updated:
  • Published:
Share
URL copied!

Read more news

Unite! Seed Fund 2026 announcement with a small plant sprouting from soil. Call now open for student activities, teaching, and research.
Cooperation, Research & Art, Studies, University Published:

Unite! Seed Fund 2026: Open for applications

The 2026 Unite! Seed Fund call is officially open, offering funding across three strategic lines: Student Activities, Teaching and Learning, and Research and PhD. Deadline for applications is 20 March 2026.
Text: Unite! Seed Fund for Students 2026. Call now open. Image: Seedling growing from soil.
Cooperation, Research & Art, Studies, University Published:

Apply now: Unite! Seed Fund 2026 - Student Call

The Unite! Seed Fund call for 2026 is now open for students. Apply now for up to €20,000 per project, involving at least two Unite! Universities. Deadline for applications is 20 March 2026.

Text: Belonging and Well-being, Online Workshop Series. Unite! logo and abstract flower design.
Cooperation, University Published:

Join Unite's Well-Being Workshop Series

The interactive Zoom sessions are designed to support doctoral students’ well-being, strengthen a sense of belonging, and offer practical tools for success in their academic journey.
Research & Art Published:

Create your CV easily with the Research.fi profile tool

Aalto University’s researchers can now create a CV using the CV tool in the Research tool service. The tool generates an editable Word CV based on your Research.fi profile information, following the official TENK CV template.