ºÚÁÏÍø

News

New quantum record: Transmon qubit coherence reaches millisecond threshold

The result foreshadows a leap in computational capabilities, with researchers now inviting experts around the globe to reproduce the groundbreaking measurement.
Close-up of a glowing dual processor on a dark motherboard with futuristic light effects and detailed circuitry.
Artistic image of a high-coherence transmon qubit on a quantum processor. Figure credit: Alexandr Käkinen.

On July 8, 2025, physicists from Aalto University in Finland published a transmon qubit coherence measurement dramatically surpassing previous scientifically published records. The millisecond coherence measurement marks a quantum leap in computational technology, with the previous maximum echo coherence measurements approaching 0.6 milliseconds. 

Longer qubit coherence allows for an extended window of time in which quantum computers can execute error-free operations, enabling more complex quantum computations and more quantum logic operations before errors occur. Not only does this allow for more calculations with noisy quantum computers, but it also decreases the resources needed for quantum error correction, which is a path to noiseless quantum computing. 

‘We have just measured an echo coherence time for a transmon qubit that landed at a millisecond at maximum with a median of half a millisecond,’ says Mikko Tuokkola, the PhD student who conducted and analysed the measurements. The median reading is particularly significant, as it also surpasses current recorded readings.

The findings have been just published in the prestigious peer-reviewed journal Nature Communications:

The researchers report their approach as thoroughly as possible, with the aim of making it reproducible for research groups around the world. 

Finland cements position at forefront of quantum

Tuokkola was supervised at Aalto University by postdoctoral researcher Dr. Yoshiki Sunada, who fabricated the chip and built the measurement setup.

‘We have been able to reproducibly fabricate high-quality transmon qubits. The fact that this can be achieved in a cleanroom which is accessible for academic research is a testament to Finland's leading position in quantum science and technology,’ adds Sunada who is currently working at Stanford University, USA.

The work is a result of the Quantum Computing and Devices (QCD) research group which is a part of Aalto University’s Department of Applied Physics, (QTF), and (FQF).

The qubit was fabricated by the QCD group at Aalto using high-quality superconducting film supplied by the Technical Research Centre of Finland (VTT). The success reflects the high quality of Micronova cleanrooms at .

‘This landmark achievement has strengthened Finland's standing as a global leader in the field, moving the needle forward on what can be made possible with the quantum computers of the future,’ says Professor of Quantum Technology Mikko Möttönen, who heads the QCD group.

Scaling up the quantum computers of the future requires advancements across several domains. Among them are noise reduction, qubit-count increases, and the qubit coherence time improvements at the centre of the new observations from the QCD. The group just opened a  and  for achieving future breakthroughs faster.

Four graphs showing data analysis: two histograms and two scatter plots with fit lines. Colours used: blue and green.

Very recent data from the Quantum Computing and Devices (QCD) research group at Aalto University showing measurement results of the energy decay times T1 [blue color in (b) and (e)] and echo coherence times T2,echo [blue color in (a), (c), (d), and (f)] of a planar transmon qubit operating at 2.9-GHz frequency. The median energy decay times and echo coherence times (top left and center panels) are roughly half a millisecond and the highest recorded T2,echo = 1.06 ms (bottom left panel). 

Image credit: Mikko Tuokkola / Aalto University.

Quantum Computing and Devices (QCD)

We have a major effort on experimental low-temperature physics, but we also carry out computational and theoretical work down to fundamental quantum mechanics.

Department of Applied Physics
Picture of OtaNano lab equipment.

OtaNano

OtaNano is Finland's national research infrastructure for micro-, nano-, and quantum technologies

Logo of Finnish Quantum Flagship with stylised penguin in the letter Q

Aalto University is coordinating the Finnish Quantum Flagship — an eight year project uniting quantum science and technology research institutions and and companies throughout Finland.

QTF-hero logo

The national Quantum Technology Finland (QTF) Centre of Excellence brings together scientific and technological excellence and cutting-edge research infrastructures to harness quantum phenomena in solid-state-based quantum devices and applications.

  • Updated:
  • Published:
Share
URL copied!

Read more news

An illustrative figure comparing disease-induced immunity (left) and randomly distributed immunity (right) in the same network. Illustration: Jari Saramäki's research group, Aalto UIniversity.
Research & Art Published:

Herd immunity may not work how we think

A new study from researchers at Aalto University suggests that our picture of herd immunity may be incomplete — and that understanding how people are connected could be just as important as knowing how many are immune.
AI applications
Research & Art Published:

Aalto computer scientists in ICML 2025

Department of Computer Science papers accepted to International Conference on Machine Learning (ICML)
Forest with green mossy ground and thin trees, a square measuring frame is set on the moss.
Press releases Published:

Satellite images reveal the positive effects of restoration in the northern hemisphere peatlands

Satellite data spanning over 20 years shows that the temperature and albedo of restored peatlands begin to resemble those of intact peatlands within about a decade
Aerial view of a coastal city with numerous buildings, a marina, and boats docked. Trees and water surround the city.
Press releases, Research & Art Published:

Study: 70% of emissions from new buildings come from construction – and this is often overlooked

While energy efficiency and the use of renewable energy have reduced the life cycle emissions of new buildings, emissions from construction have not decreased. Preserving green areas and prioritizing timber construction would make construction more sustainable, researchers emphasize.