ºÚÁÏÍø

News

New surface makes oil contamination remove itself

Researchers of Aalto University have developed surfaces where oil transports itself to desired directions.

Oil drop moves away from the landing point to the direction set by geometrical patterning of the surface. Video: Ville Jokinen, Visa Noronen, Sebastian Röder.

Researchers' oleophobic surfaces are microtextured with radial arrays of undercut stripes. When oil drops fall on these surfaces, drops move away from the landing point to the direction set by asymmetric geometrical patterning of the surface. The surfaces open new avenues for power-free liquid transportation and oil contamination self-removal applications in analytical and fluidic devices.

– We developed surfaces that are able to move liquid oil droplets by surface tension forces. Droplets from anywhere within the pattern will spontaneously move to the center of the pattern, tells Postdoctoral Researcher Ville Jokinen.

- Although surface engineering facilitates effective liquid manipulation and enables water droplet self-transportation on synthetic surfaces, self-transportation of oil droplets posed a major challenge because of their low surfacetension, explains Postdoctoral Researcher Xuelin Tian.

Oil drop moves away from the landing point to the direction set by asymmetric geometrical patterning of the surface. Photo: Ville Jokinen / Aalto University

New surfaces are also able to move low surface tension liquids other than oil. They work for water, wine and even pure ethanol. Directional liquid transportation of water is also found in nature, for instance, in cactus needles and the shells of desert beetles. Researchers see a range of industrial applications.

– The droplets position themselves very accurately at the center of the pattern. This could be used to deposit arrays of functional materials. We envision the patterns being used the other way around as well, for instance, to transport unwanted stray droplets away from critical areas of devices, such as to prevent clogging of nozzles in inkjet printing, says Professor Robin Ras.

Contact details:

Postdoctoral Researcher Ville Jokinen
Aalto University (Finland)
ville.p.jokinen@aalto.fi
Tel. +358 40 587 0425

Professor Robin Ras
Aalto University (Finland)
robin.ras@aalto.fi
Tel. +358 50 432 6633

Research article: Juan Li, Qi Hang Qin, Ali Shah, Robin H. A. Ras, Xuelin Tian, Ville Jokinen: Oil droplet self-transportation on oleophobic surfaces. Science Advances 2016. DOI 10.1126/sciadv.1600148

(advances.sciencemag.org)

  • Updated:
  • Published:
Share
URL copied!

Read more news

arotor adjustable stiffness test setup
Cooperation, Research & Art Published:

Major funding powers development of next-generation machine technology aimed at productivity leap in export sectors

The BEST research project is developing new types of sealing, bearing, and damping technology.
TAIMI-hanke rakentaa tasa-arvoista työelämää. Kuva: Kauppakorkeakoulu Hanken.
Research & Art Published:

The TAIMI project builds an equal working life – a six-year consortium project seeks solutions to recruitment and skill challenges

Artificial intelligence (AI) is changing skill requirements, the population is aging, and the labor shortage is deepening. Meanwhile, the potential of international experts often remains unused in Finland. These challenges in working life are addressed by the six-year TAIMI project funded by the Strategic Research Council, and implemented by a broad consortium.
Unite! Seed Fund 2026: Call opens on 20 January. Applications open for student activities, teaching and learning, research and PhD.
Cooperation, Research & Art, Studies, University Published:

Unite! Seed Fund 2026: Call opens on 20 January 2026

Gain an early overview of the Unite! Seed Fund Call of Spring 2026. The call includes three funding lines: Student Activities, Teaching and Learning, and Research and PhD.
A large cargo ship loaded with colourful containers sails across the blue ocean under a partly cloudy sky.
Research & Art Published:

Study: Internal combustion engine can achieve zero-emission combustion and double efficiency

A new combustion concept that utilizes argon could completely eliminate nitrogen oxide emissions from internal combustion engines and double their efficiency compared to diesel engines.