ºÚÁÏÍø

News

Physicists find a new powerful method to explore phase transitions in strongly correlated quantum systems

Far-from-equilibrium dynamics of quantum many-body systems is one of the most active research areas in physics, with important connections to emerging quantum computers.
Yksityiskohta kryostaatista. Kuva: Mikko Raskinen.
Photo: Mikko Raskinen.

Researchers from Aalto University and Tampere University have developed a new theoretical method to study dynamical phase transitions in strongly correlated quantum systems. Far-from-equilibrium dynamics of quantum many-body systems is one of the most active research areas in physics. The breakthrough work was recently published in .

Besides the long-standing fundamental interest, quantum dynamics of correlated systems is highly topical for the emerging quantum computers. The first likely breakthrough application for the new technology is in the realm of quantum many-body simulations that are notoriously difficult for traditional computers.

On the other hand, the first-generation quantum computers are still limited, and quantum dynamics can be employed in benchmarking their performance.

‘Thus, comparing their predictions to those obtained by other means offers insights into their ability to simulate quantum systems. The new method to predict dynamical quantum phase transitions could be employed this way to study the performance of quantum computers,’ says Teemu Ojanen, Professor of computational physics at Tampere University.

Phase transitions is the basic phenomena of equilibrium statistical physics. A phase transition is a natural phenomenon in which a small change in a parameter, such as temperature, leads to drastic change in the properties of a substance, for instance water turning into ice. Phase transitions occur at a general level in systems composed by a large number of elementary constituents, for instance the molecules in a substance.

Phase transitions occur only in the limit of an infinite number of constituents, in which the system properties change in a truly discontinuous way. This limit is called the thermodynamic limit, an essential concept to understand phase transitions. The number of molecules in a macroscopic amount of water or any other substance is so astronomically large that the thermodynamic limit is in fact reached for all practical purposes.

The study of phase transitions in various forms has kept scientists busy since the very beginnings of the scientific endeavor. With the limited amount of funding at their disposal, scientists, and in particular physicists, do not have the luxury to study phase transitions directly in the thermodynamic limit.  To overcome this limitation, they have devised various methods to infer the existence of a phase transition from the analysis of systems of small size. These methods are particularly important in the case of quantum systems which require a large amount of computational power even for an embarrassingly small number of constituents.

The Aalto University research group led by Professor Christian Flindt is part of the national Centre of Excellence, and InstituteQ, The Finnish Quantum Institute

The original research article, which was published 26.10. 2021 in Physical Review X, can be accessed here: .

News article published originally by Tampere University .

Further information:

  • Updated:
  • Published:
Share
URL copied!

Read more news

Diagram showing cooling and heating effects of metasurfaces, with examples of white and grey metasurfaces in winter and cloudy settings.
Research & Art Published:

Researchers invent nano-clouds that can change colour, temperature and outwit heat sensors

Bio-Inspired Metasurfaces Enable Daytime Cooling, Heating, and Thermal Camouflage in a Single Solution
AI-on-Demand
Research & Art Published:

AI-on-Demand platform expands to accelerate European AI innovation across research and industry

Aalto University’s Center for Knowledge and Innovation Research (CKIR) is proud to contribute
Person wearing a patterned knit sweater and grey turtleneck in a science laboratory with metal equipment in the background.
Awards and Recognition, Research & Art Published:

Postdoctoral researcher Bayan Karimi wins 2025 Young Scientist Prize

The prize is the 2025 IUPAP Young Scientist Prize for the Commission on Low Temperature Physics (C5).
Environmental Engineering new flow channel in Otaniemi, with students and teaching staff
Research & Art Published:

Significant funding from Maa- ja vesitekniikan tuki for Olli Varis's research group

The InnoWAT project strengthens education in the water sector