ºÚÁÏÍø

News

Physicists find a new powerful method to explore phase transitions in strongly correlated quantum systems

Far-from-equilibrium dynamics of quantum many-body systems is one of the most active research areas in physics, with important connections to emerging quantum computers.
Yksityiskohta kryostaatista. Kuva: Mikko Raskinen.
Photo: Mikko Raskinen.

Researchers from Aalto University and Tampere University have developed a new theoretical method to study dynamical phase transitions in strongly correlated quantum systems. Far-from-equilibrium dynamics of quantum many-body systems is one of the most active research areas in physics. The breakthrough work was recently published in .

Besides the long-standing fundamental interest, quantum dynamics of correlated systems is highly topical for the emerging quantum computers. The first likely breakthrough application for the new technology is in the realm of quantum many-body simulations that are notoriously difficult for traditional computers.

On the other hand, the first-generation quantum computers are still limited, and quantum dynamics can be employed in benchmarking their performance.

‘Thus, comparing their predictions to those obtained by other means offers insights into their ability to simulate quantum systems. The new method to predict dynamical quantum phase transitions could be employed this way to study the performance of quantum computers,’ says Teemu Ojanen, Professor of computational physics at Tampere University.

Phase transitions is the basic phenomena of equilibrium statistical physics. A phase transition is a natural phenomenon in which a small change in a parameter, such as temperature, leads to drastic change in the properties of a substance, for instance water turning into ice. Phase transitions occur at a general level in systems composed by a large number of elementary constituents, for instance the molecules in a substance.

Phase transitions occur only in the limit of an infinite number of constituents, in which the system properties change in a truly discontinuous way. This limit is called the thermodynamic limit, an essential concept to understand phase transitions. The number of molecules in a macroscopic amount of water or any other substance is so astronomically large that the thermodynamic limit is in fact reached for all practical purposes.

The study of phase transitions in various forms has kept scientists busy since the very beginnings of the scientific endeavor. With the limited amount of funding at their disposal, scientists, and in particular physicists, do not have the luxury to study phase transitions directly in the thermodynamic limit.  To overcome this limitation, they have devised various methods to infer the existence of a phase transition from the analysis of systems of small size. These methods are particularly important in the case of quantum systems which require a large amount of computational power even for an embarrassingly small number of constituents.

The Aalto University research group led by Professor Christian Flindt is part of the national Centre of Excellence, and InstituteQ, The Finnish Quantum Institute

The original research article, which was published 26.10. 2021 in Physical Review X, can be accessed here: .

News article published originally by Tampere University .

Further information:

Christian Flindt

Associate Professor
T304 Dept. Applied Physics
  • Updated:
  • Published:
Share
URL copied!

Read more news

A woman in white stands in a theatrical dressing room with violet walls, a lit vanity mirror, and hanging clothes.
Cooperation, Research & Art Published:

Hämeenlinna Art Museum’s exhibition brings artworks to life through film

Hämeenlinna Art Museum will open a new exhibition Kehyskertomuksia: 24 fps / Reframing Cinema, produced in collaboration with the Aalto University Department of Film ELO.
An eye by Matti Ahlgren.
Press releases Published:

New macular degeneration treatment the first to halt disease’s progression

Aalto University researchers have uncovered a promising way to treat the dry form of the age- related macular degeneration (AMD) in the early diagnosis phase that could potentially stop its progression. The novel treatment approach aims to strengthen the protective mechanisms of affected cells using heat, explains Professor Ari Koskelainen.
Left: Daniela da Silva Fernandes, right: Robin Welsch.
Press releases Published:

AI use makes us overestimate our cognitive performance

New research warns we shouldn’t blindly trust Large Language Models with logical reasoning –– stopping at one prompt limits ChatGPT’s usefulness more than users realise.
Hitesh Monga wearing Tutor in Aalto University shirt and overalls, standing in front of a brick wall with metal artwork
Studies Published:

Hitesh Monga shaped his path in Aalto from a summer intern to a master’s graduate

Hitesh Monga, graduate from Communication Engineering master's major, shares the path that lead him ºÚÁÏÍø and beyond