黑料网

News

Qubits as valves: controlling quantum heat engines

Researchers from Aalto University are designing nano-sized quantum heat engines to explore whether they may be able to outperform classical heat engines in terms of power and efficiency.
Tunable quantum heat valve

In their paper, published in Nature Physics, the group led by Professor Jukka Pekola presents a way to solve a problem in how quantum systems interact and exchange energy with their macroscopic surroundings, and within themselves. The group strives to treat quantum information and thermodynamics on the same footing in their research.

鈥榃e have realised a miniature heat valve in a quantum system composed of an artificial atom, a superconducting qubit鈥攖he basic building block of both quantum computing and quantum heat engines,鈥 explains Professor Pekola.

While in quantum computers the qubit has to be decoupled from the noisy external world to sustain a fragile quantum state, in quantum heat engines, the system needs to be coupled to its dissipative surroundings, to heat baths.

A particularly puzzling problem is the process of thermalisation when connecting external heat sources or 鈥榯hermal baths鈥 to a coherent quantum system or qubit. Ultimately, heat is exchanged between these systems through the emission of photons, one by one.

鈥楿sing a qubit controlled by a magnetic field as a 鈥渧alve鈥, we can either block or release the flow of photons carrying the heat through the qubit between two 鈥渉eat baths鈥 formed of metallic resistors,鈥 explains Dr. Alberto Ronzani, the lead author of the paper.

A quantum heat engine transforms heat into useful work or, in reverse, operates as a refrigerator.

鈥極ur work demonstrates how a heat valve can work in certain cases. We aim to understand, combining experimental and theoretical efforts, how quantum refrigerators and heat engines work, but have yet to come up with a general picture of the cross-over between non-dissipative and fully dissipative systems. That鈥檚 a challenge for the future,鈥 says Pekola.

In addition to Pekola and Ronzani, the team consists of doctoral students Bayan Karimi and Jorden Senior, Dr. Joonas Peltonen and additional collaborators Yu-Cheng Chang and Dr. ChiiDong Chen from the National Taiwan University and the Institute of Physics, Academia Sinica, in Taiwan, Republic of China, with experimental contributions to this work.

Jukka Pekola leads  鈥 Centre of Excellence funded by the Academy of Finland. The experimental research was carried out at the for micro, nano and quantum technologies in Finland.

Research article: A. Ronzani, B. Karimi, J. Senior, Y.-C. Chang, J.T. Peltonen, C.D. Chen, and J.P. Pekola: 鈥楾unable photonic heat transport in a quantum heat valve鈥. Nature Physics 14:7 (2018). DOI: .

More information:
Jukka Pekola, Academy Professor
jukka.pekola@aalto.fi
tel. +358 50 344 2697

Image: Jorden Senior / Aalto University

  • Updated:
  • Published:
Share
URL copied!

Read more news

Text 'Doc+ initiative' with colourful explosion on black background. Slogan: Your skills. Your path. Your impact.
Research & Art, Studies Published:

Enhancing doctoral researchers鈥 work-life skills 鈥 Join the DOC+ events

Doctoral student or postdoc, have you been pondering about building a meaningful doctoral career? Or about the future of AI in research and working life? These events and learning opportunities are for you!
A worker operates a tablet while a robotic arm welds metal, emitting sparks in an industrial setting.
Research & Art Published:

Specialised AI models could be Finland's next global export

Specialised, resource-efficient AI models could be the next competitive edge of our country, and a way to stand out among the use of large language models.
Two people presenting data on Nordic markets. One holds a microphone, the other gestures towards a screen.
Cooperation, Press releases, University Published:

Aalto University to host the INNOVA Europe Summit 2026 in Espoo

Aalto University to host the INNOVA Europe Summit 2026 in Espoo, bringing together Europe鈥檚 next generation of student entrepreneurs.
Silhouette of a person thinking, overlaid with colourful digital data and graphics on the right side.
Cooperation, Press releases Published:

Finnish AI Region Secures Second Term with Top Marks from EU

Finnish AI Region (FAIR) EDIH has been selected to continue operations for a second term with excellent ratings. European Union continuation funding enables service expansion from the beginning of 2026. Aalto University is one of 10 partners in FAIR.