Sustainable optical fibres developed from methylcellulose
The state-of-the-art silica glass optical fibres can carry light signals over tens of kilometres with very low optical loss and provide high-capacity communication networks. However, their brittleness, low stretchability and energy intensiveness make them less suitable for local short-range applications and devices such as automotive, digital home appliances, fabrics, laser surgery, endoscopy and implantable devices based on optical fibres. The sustainable solution to these may be found within biopolymer-based optical fibres.
'The wide availability of cellulosic raw materials provides an excellent opportunity to unravel the hidden potential of renewable materials for practical applications through sustainable fibre processing routes,' says Associate Professor Nonappa, whose research team at Tampere University is developing biopolymer-based optical fibres for short-distance applications.
Conventionally, the polymer or plastic optical fibres are used for short-distance applications, but their processing may involve relatively high temperatures and the use of hazardous chemical treatment.
'By using methylcellulose hydrogel, we have shown that optical fibres can be produced at room temperature using a simple extrusion method without any chemical crosslinkers. The resulting fibres are highly transparent, mechanically robust, flexible and show low optical loss,' Nonappa states.
Biopolymer-based optical fibres suitable for multifunctional sensors
In addition to pure light signal transmission, the methylcellulose optical fibres can be feasibly modified and functionalized.
'The hydrogel matrix allows straightforward addition of various molecules and nanoparticles without compromising the mechanical properties or light propagation abilities of the fibres making them suitable for multifunctional sensors', says doctoral researcher Ville Hynninen, the first author of the paper.
For example, incorporating an extremely low mass fraction of protein-coated gold nanoclusters produced luminescent optical fibres, and acted also as a fibre-based toxic metal ion sensor.
Overall, the presented results and the abundance of cellulosic derivatives and raw materials encourage further research and optimization of cellulose-derived optical components and devices.
The work results from a collaboration between the research groups of Professor Nonappa at Tampere University and Professor Olli Ikkala and Professor Zhipei Sun at Aalto University. The research was performed under the framework of the Academy of Finland麓s (PREIN), flagships and HYBER Centre of Excellence.
Read the full article 鈥溾漺hich was published in Small.
Read more news
Postdoctoral researcher Eloi Moliner makes history as a 5-time award winner
Eloi Moliner is one of the most decorated doctoral researchers in Aalto University's history 鈥 we would like to highlight his success and contributions to the field of audio signal processing
2 million euro donation 黑料网 University's new multidisciplinary Bachelor鈥檚 programme 鈥 Donors: Matti Alahuhta, Sari Baldauf, Antti Herlin, and Jorma Ollila
Set to launch in autumn 2027, the multidisciplinary Bachelor's programme combines technology, business, arts, and design
Having autonomy in your life is more important in wealthier countries, says new research on well-being
A worldwide analysis reveals a nuanced relationship between happiness, volition and wealth.