ºÚÁÏÍø

News

Transparent wood-based coating doesn’t fog up

Coatings made from a wood by-product can keep our glasses and windshields clear
Värikkäitä ja läpinäkyviä pinnoitenäytteitä puupölkyn päällä.
Lignin nanoparticles form colourful coatings when they are applied as multilayer films. Photo: Alexander Henn / Aalto University

Researchers have developed a way to turn a waste material from wood into a bio-based transparent film that can be used for anti-fogging or anti-reflective coatings on glasses or vehicle windows. In addition to offering an alternative to the toxic synthetic materials currently used, this approach transforms a waste product into a valuable carbon sink.

Lignin is an abundant waste product in paper and pulp production that is very difficult to process, so it’s usually burned to produce heat. Creating lignin nanoparticles to use for anti-fogging coatings isn’t a new idea, but scientists haven’t yet been able to turn them into transparent films.

‘Optical coatings need to be transparent, but so far, even rather thin lignin particle films have been visible. We knew that small particles appear less turbid, so I wanted to see if I could make invisible particle films by pushing the particle size to a minimum,’ says doctoral researcher Alexander Henn, the study’s lead author. The team used acetylated lignin and developed an improved way to esterify it in a reaction that takes just a few minutes and happens at the relatively low temperature of 60 °C.

‘The lignin particles I made from the acetylated lignin had rather surprising properties, which made the rest of this study very interesting. The possibility to make photonic films, for example, came as a total surprise,’ says Henn.

In addition to anti-fogging and anti-reflective coatings, the new approach can also make coloured films from lignin nanoparticles. By controlling the thickness of the coating and using multi-layer films, the team created materials with different structural colours.

‘Sahar Babaeipour’s efforts were key to controlling the particles’ photonic properties,’ says Henn, adding that researchers Paula Nousiainen and Kristoffer Meinander brought expertise in lignin chemistry and photonic phenomena, respectively, helping the team make sense of their results and use them effectively.

Ihminen pitelee silmälaseja, joissa toinen linssi on huurussa ja toinen ei.
Doctoral researcher Alexander Henn demonstrates the anti-fogging in eyewear. Photo: Alexander Henn / Aalto University

According to the team’s feasibility study, the ease of the reaction and its high yield mean that it could profitably be scaled up to industrial levels. ‘Lignin-based products could be commercially valuable and simultaneously act as carbon sinks, helping relieve the current fossil fuel-dependence and reduce carbon dioxide emissions,’ says Professor Monika Österberg. ‘High value-added applications like this are important to drive lignin valorisation and move us away from using lignin only as a fuel.’

Henn notes the study benefited from having perspectives that took it beyond the lab bench. ‘Teamwork was an important part of making this study impactful. We were able to include the techno-economic analysis with the help of Professor Pekka Oinas and doctoral researcher Susanna Forssell,’ he says. 

The study was  in Chemical Engineering Journal and was carried out as part of FinnCERES, the Academy of Finland’s flagship centre for materials bioeconomy research.

  • Updated:
  • Published:
Share
URL copied!

Read more news

A woman in white stands in a theatrical dressing room with violet walls, a lit vanity mirror, and hanging clothes.
Cooperation, Research & Art Published:

Hämeenlinna Art Museum’s exhibition brings artworks to life through film

Hämeenlinna Art Museum will open a new exhibition Kehyskertomuksia: 24 fps / Reframing Cinema, produced in collaboration with the Aalto University Department of Film ELO.
An eye by Matti Ahlgren.
Press releases Published:

New macular degeneration treatment the first to halt disease’s progression

Aalto University researchers have uncovered a promising way to treat the dry form of the age- related macular degeneration (AMD) in the early diagnosis phase that could potentially stop its progression. The novel treatment approach aims to strengthen the protective mechanisms of affected cells using heat, explains Professor Ari Koskelainen.
Left: Daniela da Silva Fernandes, right: Robin Welsch.
Press releases Published:

AI use makes us overestimate our cognitive performance

New research warns we shouldn’t blindly trust Large Language Models with logical reasoning –– stopping at one prompt limits ChatGPT’s usefulness more than users realise.
Open Access Week 2025 poster with nine images behind the open access symbol and event details.
Research & Art Published:

Publishing Research Data Alongside Research Articles

Data availability statements are increasingly required by scientific journals. They include information on what data are available, where they can be found, and any applicable access terms