ºÚÁÏÍø

News

Alexandru Paler: Creating software for quantum computers

The newest professor to join the department of computer science tells us about how, when you cut through all the hype, quantum computing is full of interesting challenges that unites diverse fields
Professor Paler infront of the Comptuer Science department
Alexandru Paler, Photo by Matti Ahlgren

Alexandru Paler has joined the department of computer science as an assistant professor. Paler was previously a researcher at Johannes Keppler University, Linz in Austria and did his PhD slightly further upstream on the Danube at the University of Passau in Germany. We spoke to him about his work on developing software for quantum computing.

What do you research?

My work is like a triangle, with three sides that support each other. First is the design and implementation of quantum software, the second is quantum error correction software, and the third, newest side, is quantum circuit simulation.

I did my PhD in circuit design, which including quantum circuit design. After this, my research focused on quantum software, which is the software required for operating a quantum computer. It’s such a wide area and there are many people working in different corners, so the work covers a lot of bases. I spent two of my postdoc years writing code, but realized that a lot of it was useless. I’d made state of the art tools, but they did not produce state of the art results because there wasn’t the possibility to actively incorporate error-correction methods. So, I started exploring which software parameters need to be optimized in order to improve the detection of errors.

With quantum computers, errors can arise from imperfections in the hardware and noise from the environment, and these are problems that physicists are trying to solve. But even with a perfect system you would still get errors from the environment, so I am interested in software that can recognize and correct these errors. These tools are called quantum decoders.

The third part of my research is related to quantum circuit simulation. We started looking into simulation software because testing the decoders and analyzing the circuits needs a quantum computer, and we don’t have quantum computers quite yet. Simulating quantum computers is a difficult problem, so we are focusing only on specific simulation requirements.

These three strands make up the triangle of my work, hopefully they will come together and result in something nice.

What interested you about the field?

To be honest I didn’t really have a clue at the time what I was getting myself into. In retrospect, I was drawn to this field because it’s a challenging problem. I didn’t care too much for my employability, I was interested in the research challenges.

So where do you see the field going next?

I'm into the field of quantum computing because it's so interdisciplinary in the truest sense, it's quite difficult to stay afloat of everything that's happening. Even if you cut out all of the hype—of which there is a lot— people are generating very interesting results about computing and engineering in general. We’re learning things that are valuable for fields outside of quantum computing. One example is that I did my Master’s thesis on digital image processing, which had nothing to do with quantum computing. Now, people are talking about quantum machine learning, with applications in things like image classification. It is possible to connect broad research areas of computer science, physics and engineering together with quantum computing research. Even if quantum computing turned out to be a great big disappointment and didn’t work at all, then there would be value from all the sharing of knowledge from across all these different fields!

Contact:

Alexandru Paler
Professor
Department of Computer Science
Alexandru.paler@aalto.fi

  • Updated:
  • Published:
Share
URL copied!

Read more news

An eye by Matti Ahlgren.
Press releases Published:

New macular degeneration treatment the first to halt disease’s progression

Aalto University researchers have uncovered a promising way to treat the dry form of the age- related macular degeneration (AMD) in the early diagnosis phase that could potentially stop its progression. The novel treatment approach aims to strengthen the protective mechanisms of affected cells using heat, explains Professor Ari Koskelainen.
A person wearing a black long-sleeved shirt sits in a modern office space, with blurred office background.
Appointments Published:

Assistant Professor Jiancheng Yang improves healthcare with AI

Yang is one of the nine newly recruited professors joining the ELLIS Institute Finland as principal investigators. 
Left: Daniela da Silva Fernandes, right: Robin Welsch.
Press releases Published:

AI use makes us overestimate our cognitive performance

New research warns we shouldn’t blindly trust Large Language Models with logical reasoning –– stopping at one prompt limits ChatGPT’s usefulness more than users realise.
Hitesh Monga wearing Tutor in Aalto University shirt and overalls, standing in front of a brick wall with metal artwork
Studies Published:

Hitesh Monga shaped his path in Aalto from a summer intern to a master’s graduate

Hitesh Monga, graduate from Communication Engineering master's major, shares the path that lead him ºÚÁÏÍø and beyond