ºÚÁÏÍø

News

Machine learning helps design new materials

Researchers at Tampere University of Technology and Aalto University taught machine learning algorithms to predict how materials stretch. This new application of machine learning opens new opportunities in physics and possible applications can be found in the design of new optimal materials.
Machine Learning algorithm prediciting stress v strain

Most regular objects tend to stretch ‘evenly’, that is: scientists can predict how much force is required to make a material stretch by a certain distance. Recent experiments have shown that these predictions don’t hold up at the micrometre scale. The stretching of microscopic crystals happens in discrete bursts with a very wide size distribution. Since the bursts occur sporadically, seemingly identical micro-scale samples can stretch in very different ways. This variability of the strength characteristics of the samples poses a challenge for the development of novel materials with desired properties. In their article Machine learning plastic deformation of crystals published in Nature Communications, the researchers use machine learning to predict the characteristics of individual samples.

'The machine learning algorithms succeeded in measuring how predictable the stretch process of small crystalline samples is. This would have been practically impossible with traditional means, but machine learning enables the discovery of new and interesting results,' explains Associate Professor Lasse Laurson from the Laboratory of Physics at Tampere University of Technology.

The irreversible plastic deformation of crystalline substances occurs when crystallographic defects, called dislocations, move from one location in the crystal to another. Crystalline materials, such as metals or ice almost always contain networks of dislocations, with each crystal containing its own network.  

The researchers trained machine learning algorithms to recognise the connection between an object’s microscopic structure and the amount of force required to stretch a sample. The study revealed, amongst other things, that the predictability of the amount of force required changes on the stretching of the sample: At first, it becomes harder to predict the force required as the stretch grows, which depends mostly on the stretch bursts’ sporadic nature. Surprisingly, however, predictability improves as the stretch continues to grow. Size also affects predictability: it is easier to predict the deformation process of larger crystals than smaller ones.

'As the stretch grows, the number of bursts reduces, consequently improving predictability. This is promising in terms of predicting the yield of individual samples, which is a key objective in material physics,' says Henri Salmenjoki, doctoral candidate at the Department of Applied Physics at Aalto University. 

'Our research indicates that machine learning can be used to predict very complex and non-linear physical processes. In addition to the development of optimal materials, possible applications can be found in the prediction of dynamics of many other complex systems,' Laurson explains.

Professor Mikko Alava from Aalto University was also involved in the recently published study. The study received funding from the Academy of Finland.

Read more about the study in the

  • Updated:
  • Published:
Share
URL copied!

Read more news

Text 'Doc+ initiative' with colourful explosion on black background. Slogan: Your skills. Your path. Your impact.
Research & Art, Studies Published:

Enhancing doctoral researchers’ work-life skills – Join the DOC+ events

Doctoral student or postdoc, have you been pondering about building a meaningful doctoral career? Or about the future of AI in research and working life? These events and learning opportunities are for you!
A worker operates a tablet while a robotic arm welds metal, emitting sparks in an industrial setting.
Research & Art Published:

Specialised AI models could be Finland's next global export

Specialised, resource-efficient AI models could be the next competitive edge of our country, and a way to stand out among the use of large language models.
Two people presenting data on Nordic markets. One holds a microphone, the other gestures towards a screen.
Cooperation, Press releases, University Published:

Aalto University to host INNOVA Europe 2026 Grand Final in Espoo

Aalto University will host the INNOVA Europe 2026 Grand Final in Espoo, bringing together leading student-led startups from European universities.
Silhouette of a person thinking, overlaid with colourful digital data and graphics on the right side.
Cooperation, Press releases Published:

Finnish AI Region Secures Second Term with Top Marks from EU

Finnish AI Region (FAIR) EDIH has been selected to continue operations for a second term with excellent ratings. European Union continuation funding enables service expansion from the beginning of 2026. Aalto University is one of 10 partners in FAIR.