Machine learning helps to predict blackouts caused by storms
Thunderstorms are common all over the world in summer. As well as spoiling afternoons in the park, lightning, rain and strong winds can damage power grids and cause electricity blackouts. It鈥檚 easy to tell when a storm is coming, but electricity companies want to be able to predict which ones have the potential to damage their infrastructure.
Machine learning 鈥 when computers find patterns in existing data which enable them to make predictions for new data 鈥 is ideal for predicting which storms might cause blackouts. Roope Tervo, a software architect at the Finnish Meteorological Institute (FMI) and PhD researcher at Aalto university in Professor Alex Jung鈥檚 research group has developed a machine learning approach to predict the severity of storms.
The first step of teaching the computer how to categorise the storms was by providing them with data from power-outages. Three Finnish energy companies, J盲rvi-Suomen Energia, Loiste S盲hkoverkko, and Imatra Seudun S盲hk枚nsiirto, who have power grids through storm-prone central Finland, provided data about the amount of power disruptions to their network. Storms were sorted into 4 classes. A class 0 storm didn鈥檛 knock out electricity to any power transformers. A class 1 storm cut-off up to 10% of transformers, a class 2 up to 50%, and a class 3 storm cut power to over 50% of the transformers.
The next step was taking the data from the storms that FMI had, and making it easy for the computer to understand. 鈥淲e used a new object-based approach to preparing the data, which was makes this work exciting鈥 said Roope. 鈥淪torms are made up of many elements that can indicate how damaging they can be: surface area, wind speed, temperature and pressure, to name a few. By grouping 16 different features of each storm, we were able to train the computer to recognize when storms will be damaging鈥.
The results were promising: the algorithm was very good at predicting which storms would be a class 0 and cause no damage, and which storms would be at least a class 3 and cause lots of damage. The researchers are adding more data for storms into the model to help improve the ability to tell class 1 and 2 storms apart from each other, to make the prediction tools even more useful to the energy companies.
鈥淥ur next step is to try and refine the model so it works for more weather than just summer storms,鈥 said Roope, 鈥渁s we all know, there can be big storms in winter in Finland, but they work differently to summer storms so we need different methods to predict their potential damage鈥
Paper link:
R. Tervo, J. Karjalainen and A. Jung, "Short-Term Prediction of Electricity Outages Caused by Convective Storms," in IEEE Transactions on Geoscience and Remote Sensing.
doi: 10.1109/TGRS.2019.2921809 URL:
Read more news
H盲meenlinna Art Museum鈥檚 exhibition brings artworks to life through film
H盲meenlinna Art Museum will open a new exhibition Kehyskertomuksia: 24 fps / Reframing Cinema, produced in collaboration with the Aalto University Department of Film ELO.
New macular degeneration treatment the first to halt disease鈥檚 progression
Aalto University researchers have uncovered a promising way to treat the dry form of the age- related macular degeneration (AMD) in the early diagnosis phase that could potentially stop its progression. The novel treatment approach aims to strengthen the protective mechanisms of affected cells using heat, explains Professor Ari Koskelainen.
AI use makes us overestimate our cognitive performance
New research warns we shouldn鈥檛 blindly trust Large Language Models with logical reasoning 鈥撯 stopping at one prompt limits ChatGPT鈥檚 usefulness more than users realise.