黑料网

News

Unlocking radiation-free quantum technology with graphene

鈥淗eavy fermions鈥 are an appealing theoretical way to produce quantum entangled phenomena, but until recently have been observed mostly in radioactive compounds. A new paper has shown it is possible to make heavy fermions in subtly modified graphene, which is much cheaper and safer
Scehmatic of a heavy fermion on graphene
Schematic of how heavy fermions form in twisted graphene sheets (credit Jose Lado, Aalto University)

Rare-earth compounds have fascinated researchers for decades due to the unique quantum properties they display, which have so far remained totally out of reach of everyday compounds. One of the most remarkable and exotic properties of those materials is the emergence of exotic superconducting states, and particularly the superconducting states required to build future topological quantum computers. While these specific rare-earth compounds, known as heavy fermion superconductors, have been known for decades, making usable quantum technologies out of them has remained a critically open challenge. This is because these materials contain radioactive elements, such as uranium and plutonium, rendering them of limited use in real-world quantum technologies.

New research has now revealed an alternative pathway to engineer the fundamental phenomena of these rare-earth compounds solely with graphene, which has none of the safety problems of traditional rare-earth compounds. The exciting result in the new paper shows how a quantum state known as a 鈥渉eavy fermion鈥 can be produced by combining three twisted graphene layers. A heavy fermion is a particle 鈥 in this case an electron 鈥 that behaves like it has a lot more mass than it actually does. The reason it behaves this way stems from unique quantum many-body effects that were mostly only observed in rare-earth compounds until now. This heavy fermion behavior is known to be the driving force of the phenomena required to use these materials for topological quantum computing. This new result demonstrates a new, non-radioactive way of achieving this effect using only carbon, opening up a pathway for sustainably exploiting heavy fermion physics in quantum technologies. 

In the paper authored by Aline Ramires, (Paul Scherrer Institute, Switzerland) and Jose Lado (Aalto University), the researchers show how it is possible to create heavy fermions with cheap, non-radioactive materials. To do this, they used graphene, which is a one-atom thick layer of carbon. Despite being chemically identical to the material that is used in regular pencils, the sub-nanometre thickness of graphene means that it has unexpectedly unique electrical properties. By layering the thin sheets of carbon on top of one another in a specific pattern, where each sheet is rotated in relation to the other, the researchers can create the quantum properties effect that results in the electrons in the graphene behaving like heavy fermions. 

鈥淯ntil now, practical applications of heavy fermion superconductors for topological quantum computing has not been pursued much, partially because it required compounds containing uranium and plutonium, far from ideal for applications due to their radioactive nature鈥, says Professor Lado, 鈥淚n this work we show that one can aim to realize the exactly very same physics just with graphene. While in this work we only show the emergence of heavy fermion behavior, addressing the emergence of topological superconductivity is a natural next step, which could potentially have a groundbreaking impact for topological quantum computing.鈥

Topological superconductivity is a topic of critical interest for quantum technologies, also tackled by alternative strategies in other papers from Aalto University Department of Applied Physics, including a previous paper by Professor Lado. 鈥淭hese results potentially provide a carbon-based platform for exploitation of heavy fermion phenomena in quantum technologies, without requiring rare-earth elements鈥, concludes Professor Lado.

The paper, 鈥楨mulating Heavy Fermions in Twisted Trilayer Graphene鈥 is published in the journal Physical Review Letters 

Contact

Jose Lado

Jose Lado

Assistant Professor
T304 Dept. Applied Physics
  • Updated:
  • Published:
Share
URL copied!

Read more news

Person wearing a patterned knit sweater and grey turtleneck in a science laboratory with metal equipment in the background.
Awards and Recognition, Research & Art Published:

Postdoctoral researcher Bayan Karimi wins 2025 Young Scientist Prize

The prize is the 2025 IUPAP Young Scientist Prize for the Commission on Low Temperature Physics (C5).
Environmental Engineering new flow channel in Otaniemi, with students and teaching staff
Research & Art Published:

Significant funding from Maa- ja vesitekniikan tuki for Olli Varis's research group

The InnoWAT project strengthens education in the water sector
A group of people sitting on stairs with large orange bean bags around them.
Cooperation, University Published:

Erasmus+ Staff Training Week: Transnational Joint Courses and the Exchange Student鈥檚 Path from Home to Host

Twenty-five participants from across Europe gathered at Aalto University for this year鈥檚 Erasmus+ Staff Training Week, focused on transnational joint courses and student mobility.
Artistic illustration: Algorithms over a computer chip
Research & Art Published:

Aalto computer scientists in STOC 2025

Two papers from Aalto Department of Computer Science were accepted to the Symposium on Theory of Computing (STOC).