News

Nanowires replace Newton’s famous glass prism

Researchers have designed the smallest ever spectrometer, which could turn a smartphone into a microscope
nanowire spectrometer imaging a cell. image ella maru studio
The nanowire spectrometer is imaging a cell. Image: Ella Maru Studio

Scientists have designed an ultra-miniaturized spectrometer that could directly make chemical fingerprint analysis. Made from a single nanowire, the spectrometer is the smallest ever designed. It could be used in potential applications such as assessing the freshness of foods, the quality of drugs, identifying counterfeit objects, or even imaging single cells, all possible from within a smartphone camera. Details are in the journal Science.

In the 17th century, Sir Isaac Newton, through his observations on the splitting of light by a prism, sowed the seeds for a whole new field of science studying the interactions between light and matter – spectroscopy. Today, optical spectrometers are essential tools in the industry and almost all fields of scientific research. Through analysing the characteristics of light, they can tell us about the processes within galactic nebulae, millions of lightyears away, down to the characteristics of protein molecules.

However, even now, the majority of spectrometers are based around principles similar to what Newton demonstrated with his prism: the spatial separation of light into different spectral components. Such a basis fundamentally limits these spectrometers in respect of miniaturisation; they are usually bulky and complex, and certainly challenging to shrink to sizes much smaller than a coin. Four hundred years after Newton, collaborative research between Finland, UK and China has overcome this challenge to produce a system up to a thousand times smaller than those previously reported.

The researchers used a nanowire whose material composition is varied along its length, enabling it to be responsive to different colours of light across the visible spectrum. Using techniques similar to those used for the manufacture of computer chips, they then created a series of light-responsive sections on this nanowire.

“The nanowire structure we use is very unique having gradually changed bandgap. It allows efficient distinguishing of light at different colours”, said Prof. Zhipei Sun from Aalto University.

“We engineered the nanowire that allows us to get rid of the dispersive elements, like a prism, producing a far simpler, ultra-miniaturised system than conventional spectrometers can allow” said first author Zongyin Yang from the Cambridge Graphene Centre. “The individual responses we get from the nanowire sections can then be directly fed into a computer algorithm to reconstruct the incident light spectrum.”

“Our approach could allow unprecedented miniaturisation of spectroscopic devices, to an extent that could see them incorporated directly into smartphones, bringing powerful analytical technologies from the lab to the palm of our hands,” said Tawfique Hasan, who led the study.

One of the most promising potential uses of the nanowire could be in biology. Since the device is so tiny, it can directly image single cells without the need for a microscope. And unlike other bioimaging techniques, the information obtained by the nanowire spectrometer contains a detailed analysis of the chemical fingerprint of each pixel.  Prof. Sun expects that such new nanowire devices with record-breaking footprint and broad spectral response could be utilized for a wide range of academic and industrial applications, e.g., biological implants, and smart wearable devices.

Aalto University studies fabrication and properties of nanowire structures and develops new applications for photonics and quantum technologies.

Reference:

. DOI: 10.1126/science.aax8814

More information

Aalto University / Aalto satellite / photo: Mikko Raskinen

Department of Electronics and Nanoengineering

Department of Electronics and Nanoengineering (ELE) conducts research and arranges related teaching courses in the fields of electromagnetics, micro and nanotechnology, radio engineering, and space technology.

  • Updated:
  • Published:
Share
URL copied!

Read more news

An eye by Matti Ahlgren.
Press releases Published:

New macular degeneration treatment the first to halt disease’s progression

Aalto University researchers have uncovered a promising way to treat the dry form of the age- related macular degeneration (AMD) in the early diagnosis phase that could potentially stop its progression. The novel treatment approach aims to strengthen the protective mechanisms of affected cells using heat, explains Professor Ari Koskelainen.
Left: Daniela da Silva Fernandes, right: Robin Welsch.
Press releases Published:

AI use makes us overestimate our cognitive performance

New research warns we shouldn’t blindly trust Large Language Models with logical reasoning –– stopping at one prompt limits ChatGPT’s usefulness more than users realise.
Hitesh Monga wearing Tutor in Aalto University shirt and overalls, standing in front of a brick wall with metal artwork
Studies Published:

Hitesh Monga shaped his path in Aalto from a summer intern to a master’s graduate

Hitesh Monga, graduate from Communication Engineering master's major, shares the path that lead him and beyond
Assistant professor Lauri Uotinen in the Underground Research Laboratory. The rock wall behind him features two automatically detectable markers used in photogrammetry
Appointments Published:

Meet Lauri Uotinen, assistant professor of rock engineering

Lauri Uotinen combines photogrammetry and rock engineering to create new insights into underground spaces.